An Optimization-based Computational Method for Surface Fitting to Update the Geometric Information of An Existing B-Rep CAD Model

  • Published : 2010.04.01

Abstract

For several years, researchers have focused on improving the integration of the CAD, CAM and Analysis through a better communication between the various analysis tools. This tendency to integrate the CAD/Analysis and automation of the corresponding processes requires data sharing between the various tasks using an integrated product model. We are interested in this research orientation to CAD/CAM/Analysis integration by rebuilding the CAD model (BREP), starting from the Analysis results (deformed mesh). Because this problem is complex, it requires to be split into several complementary parts. This paper presents an original interoperability process between the CAD and CAE. This approach is based on a new technique of rebuilding the CAD surface model (Nurbs, Bezier, etc.) starting from triangulation (meshed surface) as a main step of the BREP solid model. In our work, the advantages of this approach are identified using a centrifugal pump example.

Keywords

References

  1. Aifaoui N. (2003), Feature-based interoperability between design. and analysis processes (paper in French), PhD. Thesis, Valenciennes University, France.
  2. Roy U., Bharadwaj B., 2002, Design with part behaviours: behavior model, representation and application, Computer aided design, CAD 3(4), 613-636.
  3. Aidi M., Tollenaere M., Ben Bacha H., Pourroy F., Maalej A. (2005), Gestion et validation des exigences du cycle de vie produit par la simulation en conception, 1er Congres International Conception et Modélisation des Systemes Mecaniques, CMSM'2005, Conference proceedings, 23-25.
  4. Lalanne B. (1987), Systeme expert d'aide a l'analyse du comportement mecanique des systemes (paper in French), PhD Thesis, Valenciennes University, France.
  5. Francois V. (1998), Automatic meshing and remeshing methods applied to model modification in the simultaneous engineering context (paper in French), PhD. Thesis. University of Henri POINCARE, Nancy I, France.
  6. Francois V., Cuillere J.C. (2000), 3D automatic remeshing applied to model modification, Computer-Aided Design 32(7), 433-444. https://doi.org/10.1016/S0010-4485(00)00028-2
  7. Hoppe H. (1994), Surface Reconstruction from Unorganized Points, PhD Thesis, University of Washington USA.
  8. Boubekeur T. (2004), Reconstruction de surface a l'aide de surfaces de subdivision, Research Master MM, UQTR, Canada.
  9. Gouri D., Touzot G. (1981), Une presentation de lamethode des elements finis, Editions Maloine S.A.
  10. Batoz J.L., Gouri D. (1999), ModElisation des structures par elements finis, Editions Hermes. Paris.
  11. Garrigues J. (1999), La methode des elements finis. Ecole Superieur de Mecanique de Marseille, Septembre. http:// jgarrigues.perso.ec-marseille.fr/ef.html
  12. Zhang L.Y., Zhou R.R., Zhou L.S. (2003), Model reconstruction from cloud data. Journal reconstruction from cloud data. Journal of Materials Processing Technology; 138, 494-498. https://doi.org/10.1016/S0924-0136(03)00127-4
  13. Louhichi B., Benamara A., Francois V. (2005), Integration CAO/Calcul par reconstruction des modeles CAO a partir des resultats de calcul, Revue internationale d'ingenierie numerique vol 1-1, 9-26,
  14. Kruth J.P., Kerstens A. (1998), Reverse engineering modelling of free-form surfaces from point clouds subject to boundary conditions, Journal of Materials Processing Technology; 76, 120-127. https://doi.org/10.1016/S0924-0136(97)00341-5
  15. Zhongwei Y. (2004), Reverse engineering of a NURBS surface from digitized points subject to boundary conditions, Computer & Graphics 28, 207-212. https://doi.org/10.1016/j.cag.2003.12.007
  16. Piegl L.A., Tiller W. (2001), Parametrization for surface fitting in reverse engineering, Computer-Aided Design 33 , 593-603. https://doi.org/10.1016/S0010-4485(00)00103-2
  17. Piegl L.A., Tiller W. (1997), The NURBS book, Springer-Verlag.
  18. Volpin O., Sheffer A. (1998), Bercovier M.J., Mesh simplification with smooth surface reconstruction, Computer aided Design 30-11, 875-882. https://doi.org/10.1016/S0010-4485(98)00044-X
  19. Ren B.Y., Hagiwara I. (2003), Composite freeform surface reconstruction using recursive interpolating subdivision scheme, Computers in Industry 50(3), 265-275. https://doi.org/10.1016/S0166-3615(03)00017-4
  20. Xunnian Y. (2005), Surface interpolation of meshes by geometric subdivision. Computer Aided Design, 37, 497-508. https://doi.org/10.1016/j.cad.2004.10.008
  21. Walton D. J., Meek D.S. (1996), A triangular G1 patch from boundary curves, Computer Aided Design 28, 113-123. https://doi.org/10.1016/0010-4485(95)00046-1
  22. Kashyap P. (1998), Geometric interpretation of continuity over triangular domains, Computer Aided Geometric Design 15, 773-786. https://doi.org/10.1016/S0167-8396(97)00033-2
  23. Steven J.O., David R.W. (2001), Mesh based geometry: A systematic approach to constructing geometry from a finite element mesh. 10th International Meshing Roundtable Newport Beach, California, Conference proceedings, 7-10.
  24. Steven J.O. (2002), David R.W., Timothy J., Tautges Facet-based surfaces for 3D mesh generation 11th international meshing roundtable, Ithaca, New York, Conference proceedings, 15-18.
  25. Morvan J.M., Thibert B. (2002), on the approximation of a smooth surface with a triangular mesh, Computational Geometry 23, 337-352. https://doi.org/10.1016/S0925-7721(02)00097-4
  26. Shaoming W. (2004), A smooth surface interpolation to 3D triangulations, Journal of computation and applied Mathematics 163, 287-293. https://doi.org/10.1016/j.cam.2003.08.074
  27. Jung H. B., Kim K. (2000), A New Parameterisation Method for NURBS Surface Interpolation, International journal of Advanced Manufacturing Technology 16, 784-790. https://doi.org/10.1007/s001700070012
  28. Bloor M.I.G., Wilson M.J. (1990), Representing PDE surfaces in terms of B-splines, Computer Aided Design 22(6), 324-331. https://doi.org/10.1016/0010-4485(90)90083-O
  29. Qin J., Terzopoulos D. (1996), D-Nurbs : a physics-based framework fo geometric design, IEEE Transactions on Visualization and Computer Graphics 2(1), 85-96. https://doi.org/10.1109/2945.489389
  30. La Gareca R., Daniel M. (2004), Declarative approach to Nurbs surface design: from semantic to geometric models, International Conference on Computer Graphics and Artificial Intelligence, Conference proceedings 161-168.
  31. Hahmann S., Konz S. (1998), Knot-removal surface fairing using search strategies, Computer Aided Design 30(2), 131-138. https://doi.org/10.1016/S0010-4485(97)00078-X
  32. Piegl L., Tiller W. (1994), Software-engineering approach to degree evaluation of B-spline curves, Computer Aided Design 26(1), 135-147.
  33. Prautzsch H. (1984), Degree evaluation of B-spline curves, Computer Aided Design 1(2), 193-198. https://doi.org/10.1016/0167-8396(84)90031-1
  34. Tiller W. (1992), Knot-removal algorithms for Nurbs curves and surfaces, Computer Aided Design 24(8), 445-453. https://doi.org/10.1016/0010-4485(92)90012-Y