• Title/Summary/Keyword: Fissure eruption

Search Result 10, Processing Time 0.028 seconds

The rift Caves in Japan

  • Ogawa, Takanori
    • Journal of the speleological society of Korea
    • /
    • no.5
    • /
    • pp.37-52
    • /
    • 1997
  • In Japan, on the volcanic line from Mt.Fuji to Hachijou Isl. in Pacific, we can see the many fissure erupted craters. The fissure eruption hasn't always left the rift caves. Recently I am investigated this era and recognized the rift caves. at Mt. Fuji 4. Miyake Isl. 3, Hachijou Isl. 3. The time of fissure eruption in Miyake Isl. make the long crack and gush the lava flow. But. we can see the rift caves only in the caldera. In the rift caves, we can see the thin coated lava on the scoria wall of the cavity and not only the side ways to extend by gasic pressure, on the surface of the earth. It is tow type rift caves. 1) The gas run to the side direction and built the cavities and after blowout the ground. 2) The gas built the cavity and then blowout the earth. I think that the thick scoria layers the most important factor and indispensable condition to built the rift caves.

  • PDF

Eruption Precursors and Volcanic Activities of Fissure Eruptions on Sundhnúkur, Iceland between 2023 and 2024 (아이슬란드 순드누쿠르(Sundhnúkur)에서 2023-2024년 발생한 틈새 분화의 전조현상과 화산활동)

  • Cheolwoo Chang
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.37 no.3
    • /
    • pp.111-126
    • /
    • 2024
  • Iceland is located at the middle of the North Atlantic Ocean and there are about 130 volcanoes. Volcanoes in Iceland that are predominantly active include the Reykjanes Volcano Belt, the West Volcanic Zone, the Mid-Island Belt, the East Volcanic Zone, the Northern Volcanic Zone, the Öræfi Volcanic Belt, and the Snæfellsnes Volcanic Belt. In these regions, there are over 30 volcanic systems, each of which is primarily composed of central volcanoes and fissures surrounding them. Since October 24th in 2023, an intensive earthquake swarm in the Svartsengi Volcanic System of the Reykjanes Volcano Belt had been detected by the Icelandic Meteorological Administration's monitoring system. Furthermore, surface uplift near Blue Lagoon which is located about 1.5 km northwest of Þorbjörn, was observed in cGPS data and inSAR images, suggesting magma intrusions in the area. On November 10th, 2023, the frequency and intensity of earthquakes increased, and more than 20,000 earthquakes were recorded with the maximum magnitude M5.3. (the same comment as above) Eventually, fissure eruptions with lava fountains up to 100 m high started in the Sundhnúkur fissure row of the Svarthenghi volcanic system on December 18th, 2023. The eruption ended on December 21st, but a new eruption occurred on January 14th, 2024. Eruptions continued to occur in February, March, May, and August in this area. The volcanic unrest in this area that can lead to future eruptions continues as of September 2024.

The Study of Cost-benefit Analysis on Fissure Sealant and Regular Checkup for Prevention of Dental Caries (치아우식증 예방을 위한 영구치 구치부 교합면 치면열구전색 및 정기검진의 비용 편익 분석)

  • Noh, Hie-Jin
    • Journal of dental hygiene science
    • /
    • v.2 no.2
    • /
    • pp.53-62
    • /
    • 2002
  • The purpose of this study is to investigate the retention and caries prevention practical effectiveness of fissure sealant and regular checkup with cost-benefit analysis. The data of this study is based on "2000 The Survey of Korean Oral Health" by Ministry of Health & Welfare. This study is to investigate cost-benefit analysis on proper treatment for the decayed, in case of operating fissure sealant on molars at 1 year after eruption of permanent teeth. The obtained results were as follows: (1) Cost-benefit analysis on fissure sealant in 6-75 year old 43,736 thousand Korean people reveals that cost of fissure sealant is 1,610,994 million won and benefit is 69,460,691 million won. (2) Benefit of fissure sealant is 39.51 times as much as cost of fissure sealant. (3) Cost of twice in a year regular checkup is 2,678,544 million won. Indirect cost of regular checkup is 2.6 times as much as direct cost. (4) Cost of fissure sealant and twice in a year regular checkup is 4,289,538 million won, and benefit is 69,460,691 million won. Benefit of fissure sealant and twice in a year regular checkup is 16.2 times as much as cost.

  • PDF

Eruptive Phases and Volcanic Processes of the Guamsan Caldera, Southeastern Cheongsong, Korea (구암산 칼데라의 분출상과 화산과정)

  • ;;;A.J. Reedman
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.74-89
    • /
    • 2002
  • Rock units, relating with the Guamsan caldera, are composed of Guamsan Tuff and rhyolitic intrusions. The Guamsan Tuff consists almost entirely of ash-flow tuffs with some volcanic breccias and fallout tuffs. The volcanic breccia comprises block and ash-flow breccias of near-vent facies and caldera-collapse breccia near the ring fracture. The lower ash-flow tuffs are of an expanded pyroclastic flow phase from the pyroclastic flow-forming eruption with an ash-cloud fall phase of the fallout tuffs on the flow units, but the upper ones are of a non-expanded ash-flow phase from the boiling-over eruption. The rhyolitic intrusions are divided into intracaldera intrusions and ring dikes that are subdivided into inner, intermediate and outer dikes. We compile the volcanic processes along a single cycle of cadela development from the eruptive phases in the Guamsan area. The explosive eruptions began with block and ash-flow phases from collapse of glowing lava dome caused by Pelean eruption, progressed through expanded pyroclastic flow phases and ash-cloud fallout phases during high column collapse of pyroclastic flow-forming eruption from a single central vent. This was followed by non-expanded ash-flow phases due to boiling-over eruption from multiple ring fissure vents. The caldera collapse induced the translation into ring-fissure vents from a single central vent in the earlier eruption. After the boiling-over eruption, there followed an effusive phase in which rhyolitic magma was injected and erupted to be progressively emplaced as small plugs/dikes and ring dikes with many lava domes on the surface. Finally rhyodacitic magma was on emplaced as a series of dikes along the junction of both outer and intermediate dikes on the southwestern side of the caldela.

Drainage Derangement and Revision by the Formation of Cheolwon-Pyeonggang Lava Plateau in Chugaryeong Rift Valley, Central Korea (추가령 열곡의 철원-평강 용암대지 형성에 따른 하계망 혼란과 재편성)

  • Lee Min-Boo;Lee Gwang-Ryul;Kim Nam-Shin
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.6 s.105
    • /
    • pp.833-844
    • /
    • 2004
  • In Chugaryeong rift valley, lava plateau formation by the fissure eruption had vanished original landforms and effected on drainage derangement and revision. 4 rivers including Namdae-cheon, Bukhan-gang, Imjin-gang and Hantan-gang watersheds have shared Cheolwon-Pyeonggang lava plateau, that is, ownerless watershed. Main agency of the dividing process are central-eruption volcanic peaks such as Orisan(453m) and 680 Peak. Especially, Orisan has played the role of divide point for 4 watersheds. In the lower-relief plateau zone, complex drainage system have caused continually river capture between neighboring watersheds. In more elevated range slope, river capture have proceeded to headward erosion. Hydrogeomorphologically, lava-filled valley has initiated decrease of the original size of flood plain, maybe, causing higher capability of inundation by heavy rains, and then more active dissection of lava plateau layer.

Volcanisms and Volcanic Processes of the Wondong Caldera, Korea (원동 칼데라의 화산작용과 화산과정)

  • 황상구;이기동;김상욱;이재영;이윤종
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.96-110
    • /
    • 1997
  • The Wondong Caldera, formed by the voluminous eruption of the rhyolitic ashflows of the Wondong Tuff which is about 1,550 m thick at the intracaldera and 550 m at the outflow, is a resurgent caldera which shows a dome structure on the central exposure of the caldera. The Wondong caldera volcanism eviscerated the magma chamber by a series of explosive eruptions during which rhyolitic magma was ejected, as small fallouts and voluminous ash-flows, to form the Wondong Tuff. The explosive eruptions began with ash-falls, progressed through pumice-falls and transmitted ash-flows. During the ash-flow phase the initial central vent eruption transmitted into late ring-fissure eruption which accompanied with caldera collapse. Contemporaneous collapse of the roop of the chamber resulted in the formation of the Wondong Caldera, a subcircular depression subsiding about 1,930 deep. Following the collapse, quartz porphyry was intruded as ring dykes along the ring fracture near the southwestern caldera rim. Subsequently the central part of the caldera floor began to be uplifted into a circular resurgent dome by the rising of residual magma. Concurrent with the resurgent doming, the volcaniclastic sediments of Hwajeri Formation were accumulated in the caldera moat and then rhyodacite lava erupted from the initial central resurgent dome and another ash-flow tuff from the northern ring fracture. After the sedimentation, the find-grained granodiorite was intruded as an arc along the eastern ring fracture of the caldera. Finally in the central part, the resurgent magma was emplaced as a hornblende biotite granite stock that formed the central dome.

  • PDF

A Study on the Dental Plague Formation and the Oral Health Condition of Preschool Children in G College in Affiliation (G대 부속 유치원생의 치면세균막 형성 및 구강건강실태에 관한 연구)

  • Lee, Cheon-Hee;Jang, Young-Ho
    • The Korean Journal of Health Service Management
    • /
    • v.4 no.2
    • /
    • pp.63-72
    • /
    • 2010
  • The present study purposed to prevent oral diseases and to improve oral health in children. For this purpose, we selected 70 cases who are 5~7 years old preschoolers at the kindergarten affiliated to G College in Gyeongsangbukdo, and analyzed the general patterns of oral care and the relation of the patterns with dental plaque and deciduous dental caries in the children. Specifically, we conducted oral examination and applied pit and fissure sealant according to the eruption of deciduous molar and first molar. In addition, we executed the 1st and 2nd tooth brushing instruction (TBI), and surveyed S-OHI and PHP twice. Excluding 14 preschoolers who did not appear in the 2nd survey, we performed the study with 56 preschoolers and drew conclusions as follows. 1. The number of decayed or missed or filled teeth among deciduous teeth was 3 or more in 42.9% of female children, and 46.4% of male children, so male children showed a slightly higher rate. 2. The degree of dental plaque formation was $1.64{\pm}1.22$ among the surveyed children. 3. The oral health index was lower after TBI than before in all the children (P<.001). 4. Change in the oral health index was particularly larger in 7 year old female children (p<.005). 5. The patient hygiene performance index was lower after TBI than before in both the buccal surface and lingual surface of the children (p<.005). 6. The patient hygiene performance index was lower after TBI than before in all of male children's teeth except the right maxillary first deciduous molar (p<.001).

Seismic Facies Classification of Igneous Bodies in the Gunsan Basin, Yellow Sea, Korea (탄성파 반사상에 따른 서해 군산분지 화성암 분류)

  • Yun-Hui Je;Ha-Young Sim;Hoon-Young Song;Sung-Ho Choi;Gi-Bom Kim
    • Journal of the Korean earth science society
    • /
    • v.45 no.2
    • /
    • pp.136-146
    • /
    • 2024
  • This paper introduces the seismic facies classification and mapping of igneous bodies found in the sedimentary sequences of the Yellow Sea shelf area of Korea. In the research area, six extrusive and three intrusive types of igneous bodies were found in the Late Cretaceous, Eocene, Early Miocene, and Quaternary sedimentary sequences of the northeastern, southwestern and southeastern sags of the Gunsan Basin. Extrusive igneous bodies include the following six facies: (1) monogenetic volcano (E.mono) showing cone-shape external geometry with height less than 200 m, which may have originated from a single monogenetic eruption; (2) complex volcano (E.comp) marked by clustered monogenetic cones with height less than 500 m; (3) stratovolcano (E.strato) referring to internally stratified lofty volcanic edifices with height greater than 1 km and diameter more than 15 km; (4) fissure volcanics (E.fissure) marked by high-amplitude and discontinuous reflectors in association with normal faults that cut the acoustic basement; (5) maar-diatreme (E.maar) referring to gentle-sloped low-profile volcanic edifices with less than 2 km-wide vent-shape zones inside; and (6) hydrothermal vents (E.vent) marked by upright pipe-shape or funnel-shape structures disturbing sedimentary sequence with diameter less than 2 km. Intrusive igneous bodies include the following three facies: (1) dike and sill (I.dike/sill) showing variable horizontal, step-wise, or saucer-shaped intrusive geometries; (2) stock (I.stock) marked by pillar- or horn-shaped bodies with a kilometer-wide intrusion diameter; and (3) batholith and laccoliths (I.batho/lac) which refer to gigantic intrusive bodies that broadly deformed the overlying sedimentary sequence.

Taxonomical Classification and Genesis of Dongsong Series Distributed on the Lava Plain in Cheolweon (철원 용암류대지 토양인 동송통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Sonn, Yeon-Kyu;Zhang, Yong-Seon;Park, Chan-Won;Jang, Byoung-Choon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.217-223
    • /
    • 2010
  • This study was conducted to reclassify Dongsong series based on the second edition of Soil Taxonomy and to discuss the formation of Dongsong series distributed on the lava plain at Cheolweon in Korea. Morphological properties of typifying pedon of Dongsong series were investigated, and physico-chemical properties were analyzed according to Soil Survey Laboratory Methods Manual. The typifying pedon of Dongsong series has brown (7.5YR 4/2) silty clay loam Ap horizon (0-16 cm), brown (7.5YR 4/2) silty clay loam BA horizon (16-22 cm), brown (7.5YR 4/2) silty clay Bt1 horizon (22-50 cm), reddish brown (5YR 5/4) silty clay Bt2 horizon (50-92 cm), and brown (7.5YR 4/3) silty clay loam Bt3 horizon (92-120 cm). It occurs on lava plain derived from baslt materials. The typifying pedon has higher bulk density than 0.90 Mg $m^{-3}$. That can not be classified as Andisol. But it has an argillic horizon from a depth of 22 to more than 120 cm, and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. It can be classified as Ultisol, not as Andisol or Alfisol. It has aquic conditions for some time in normal years in one or more horizons within 50 cm of the mineral soil surface, redoximorphic features between a depth of 25 cm, and a depth of 40 cm from the mineral soil surface, and redox concentrations, and 50%or more redox depletions with chroma of 2 or less in the matrix within the upper 12.5 cm of the argillic horizon. Therefore it can be classified as Aquult. It has episaturation, and keys out as Epiaquult. It has 50% or more chroma of 3 or more in one or more horizons between a depth of 25 cm from the mineral soil surface, and a depth of 75 cm. It can be classified as Aeric Aquult. Dongsong series have 35%or more clay at the particle-size control section, and have mesic soil temperature regime. Therefore they can be classified as fine, mesic family of Aeric Epiaquults, not as fine, mesic family of Typic Epiaqualfs. The Quarternary volcanic activities occurred in Jeju Island, Ulrung Island, Baekryeong Island, Cheolweon area, and Mt. Paekdu et al. in the Korean Penninsula. Most of them belong to the central eruption type, but Cheolweon area may be of the fissure eruption type. Dongsong series occur on Cheolweon lava plains derived from basaltic materials. Most soils distributed in Jeju Island, and derived from mainly pyroclastics are developed as Andisols. But Dongsong series distributed in Cheolweon lava plains which have a relatively dry climate and derived from basaltic materials are developed as Ultisols.

A Nested Cauldron Structure in the Tertiary Miocene Eoil Basin, Southeastern Korea (한반도 동남부 제3기 마이오세 어일분지내 둥지형 화산함몰구조)

  • Son, Moon;Kim, In-Soo;Ock, Soo-Seok
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.121-131
    • /
    • 2001
  • The combination of geological, structural and satellite image studies is used to make an examination of the Miocene eruptive type in the Eoil Basin, SE Korea. The basin subsided by the NW-SE extension due to NNW dextral shearing during the East Sea opening. Based on geological structures as well as lithofacies and ages of the basin-fills, it is divided into the NE subbasin and the SW subbasin which were abundantly filled with basaltic volcanics and marine sediments without volcanic materials, respectively: Syndeposional synclines and anticlines are characteristically developed in the NE subbasin, which amplitudes decrease away from the adjacent normal faults to make them into a homoclinal structure. The thicker lavas as well as the younger agglomerates and lacustrine sediments, which show circular distributions, are distributed around the axial zones of major synclines. The satellite image shows four remarkable circular structures within the NE subbasin. They are located adjacent to and along the normal faults, and they are laid almost exactly on the axial zones of the synclines as well as on the distribution area of the agglomerates and lacustrine sediments. These facts indicate that the basaltic lava effusion were conducted by the normal faults like a kind of fissure-eruption and its activity was more predominant at the sites in where the synclines are developed. More active effusion of lava became a reason for deeper subsidence to make differential subsidence and syndepositional folding adjacent to and along the normal faults. Hence, we suggest that a nested cauldron structure was formed in the NE subbasin of the Eoil Basin, and that the volcanism made the subbasin to be a lava pond and controlled the process of filling and sedimentation in the subbasin.

  • PDF