• 제목/요약/키워드: Fish Swarm Algorithm

검색결과 8건 처리시간 0.018초

Action Recognition Method in Sports Video Shear Based on Fish Swarm Algorithm

  • Jie Sun;Lin Lu
    • Journal of Information Processing Systems
    • /
    • 제19권4호
    • /
    • pp.554-562
    • /
    • 2023
  • This research offers a sports video action recognition approach based on the fish swarm algorithm in light of the low accuracy of existing sports video action recognition methods. A modified fish swarm algorithm is proposed to construct invariant features and decrease the dimension of features. Based on this algorithm, local features and global features can be classified. The experimental findings on the typical sports action data set demonstrate that the key details of sports action can be successfully retained by the dimensionality-reduced fusion invariant characteristics. According to this research, the average recognition time of the proposed method for walking, running, squatting, sitting, and bending is less than 326 seconds, and the average recognition rate is higher than 94%. This proves that this method can significantly improve the performance and efficiency of online sports video motion recognition.

Optimal sensor placement for health monitoring of high-rise structure based on collaborative-climb monkey algorithm

  • Yi, Ting-Hua;Zhou, Guang-Dong;Li, Hong-Nan;Zhang, Xu-Dong
    • Structural Engineering and Mechanics
    • /
    • 제54권2호
    • /
    • pp.305-317
    • /
    • 2015
  • Optimal sensor placement (OSP) is an integral component in the design of an effective structural health monitoring (SHM) system. This paper describes the implementation of a novel collaborative-climb monkey algorithm (CMA), which combines the artificial fish swarm algorithm (AFSA) with the monkey algorithm (MA), as a strategy for the optimal placement of a predefined number of sensors. Different from the original MA, the dual-structure coding method is adopted for the representation of design variables. The collaborative-climb process that can make the full use of the monkeys' experiences to guide the movement is proposed and incorporated in the CMA to speed up the search efficiency of the algorithm. The effectiveness of the proposed algorithm is demonstrated by a numerical example with a high-rise structure. The results show that the proposed CMA algorithm can provide a robust design for sensor networks, which exhibits superior convergence characteristics when compared to the original MA using the dual-structure coding method.

Particle Swarm Optimization 탐색과정의 가시화를 위한 툴 설계 (Visualization Tool Design for Searching Process of Particle Swarm Optimization)

  • 유명련
    • 한국멀티미디어학회논문지
    • /
    • 제6권2호
    • /
    • pp.332-339
    • /
    • 2003
  • 경험적 탐색(Modem Heuristics) 방법을 이용하여 복잡한 문제들의 근사해를 구하는 것이 가능하여졌다. 최근 제시된 Particle Swarm Optimization은 경험적 탐색 방법중의 하나로써 조류나 어류 등의 생물의 무리가 각각의 개체가 가지고 있는 정보를 공유해가며 먹이를 찾아가는 과정을 모의한 것이다. 그러나, 다양한 문제들의 근사해를 구하기 위해 Particle Swarm Optimization 방법을 이용하여 왔지만 해를 탐색하는 과정을 보여주기 위한 시도는 이루어지지 않았다. 본 논문에서는 Particle Swarm Optimization의 탐색과정을 가시화 하는 것을 목적으로 한다. 가시화 하는 작업을 통해 그 탐색 능력을 시각적으로 파악하는 것이 가능하며 해결방법에 관한 이해를 돕고 교육적 효과도 기대 가능하다.

  • PDF

PSO의 특징과 차원성에 관한 비교연구 (Comparative Study on Dimensionality and Characteristic of PSO)

  • 박병준;오성권;김용수;안태천
    • 제어로봇시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.328-338
    • /
    • 2006
  • A new evolutionary computation technique, called particle swarm optimization(PSO), has been proposed and introduced recently. PSO has been inspired by the social behavior of flocking organisms, such as swarms of birds and fish schools and PSO is an algorithm that follows a collaborative population-based search model. Each particle of swarm flies around in a multidimensional search space looking for the optimal solution. Then, Particles adjust their position according to their own and their neighboring-particles experience. In this paper, characteristics of PSO such as mentioned are reviewed and compared with GA which is based on the evolutionary mechanism in natural selection. Also dimensionalities of PSO and GA are compared throughout numeric experimental studies. The comparative studies demonstrate that PSO is characterized as simple in concept, easy to implement, and computationally efficient and can generate a high-quality solution and stable convergence characteristic than GA.

PSO(Particle Swarm Optinization)탐색과정의 가시화 툴 ((Visualization Tool of searching process of Particle Swarm Optimization))

  • 유명련;김현철
    • 융합신호처리학회논문지
    • /
    • 제3권4호
    • /
    • pp.35-41
    • /
    • 2002
  • 복잡한 문제들의 근사해를 구하기 위하여 최근 다양한 방법들이 소개되고 있다. 이러한 방법들은 주로 금속의 서랭(Annealing)에 의해 금속분자의 에너지가 최저점에 도달하는 과정을 모의실험한 최적화 기법(Simulated Annealing), 생물의 적자생존(Survival of Fittest)과정을 이용한 최적화 기법인 유전적 알고리즘(Genetic Algorithm)등 물리적 현상이나 생물 ?생명에 관련된 모의를 최적화 문제에 응용한 방법들이다. 최근에 소개된 Particle Swarm Optimization(PSO)는 주로 조류나 어류등의 생물의 무리가 각각의 개체가 가지고 있는 정보를 공유해가며 먹이를 찾아가는 과정을 모의한 기법이다. 하지만, 이 기법의 탐색과정이 명확하게 밝혀져 있지 않다. 본 논문에서는 PSO의 탐색과정을 가시화 하는 것을 목적으로 한다. 탐색과정을 가시화 하는 작업을 통해 그 탐색 능력을 시각적으로 파악하는 것이 가능하며 기법에 관한 이해를 돕고 교육적 효과도 기대 가능하다.

  • PDF

A Modified Particle Swarm Optimization for Optimal Power Flow

  • Kim, Jong-Yul;Lee, Hwa-Seok;Park, June-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권4호
    • /
    • pp.413-419
    • /
    • 2007
  • The optimal power flow (OPF) problem was introduced by Carpentier in 1962 as a network constrained economic dispatch problem. Since then, it has been intensively studied and widely used in power system operation and planning. In the past few decades, many stochastic optimization methods such as Genetic Algorithm (GA), Evolutionary Programming (EP), and Particle Swarm Optimization (PSO) have been applied to solve the OPF problem. In particular, PSO is a newly proposed population based stochastic optimization algorithm. The main idea behind it is based on the food-searching behavior of birds and fish. Compared with other stochastic optimization methods, PSO has comparable or even superior search performance for some hard optimization problems in real power systems. Nowadays, some modifications such as breeding and selection operators are considered to make the PSO superior and robust. In this paper, we propose the Modified PSO (MPSO), in which the mutation operator of GA is incorporated into the conventional PSO to improve the search performance. To verify the optimal solution searching ability, the proposed approach has been evaluated on an IEEE 3D-bus test system. The results showed that performance of the proposed approach is better than that of the standard PSO.

Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement

  • Li, Shunlong;Wang, Xin;Liu, Hongzhan;Zhuo, Yi;Su, Wei;Di, Hao
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.591-603
    • /
    • 2020
  • Dynamic deflection monitoring is an essential and critical part of structural health monitoring for high-speed railway bridges. Two critical problems need to be addressed when using inclinometer sensors for such applications. These include constructing a general representation model of inclination-deflection and addressing the ill-posed inverse problem to obtain the accurate dynamic deflection. This paper provides a dynamic deflection monitoring method with the placement of optimal inclinometer sensors for high-speed railway bridges. The deflection shapes are reconstructed using the inclination-deflection transformation model based on the differential relationship between the inclination and displacement mode shape matrix. The proposed optimal sensor configuration can be used to select inclination-deflection transformation models that meet the required accuracy and stability from all possible sensor locations. In this study, the condition number and information entropy are employed to measure the ill-condition of the selected mode shape matrix and evaluate the prediction performance of different sensor configurations. The particle swarm optimization algorithm, genetic algorithm, and artificial fish swarm algorithm are used to optimize the sensor position placement. Numerical simulation and experimental validation results of a 5-span high-speed railway bridge show that the reconstructed deflection shapes agree well with those of the real bridge.

노이즈 환경에서 입자 군집 최적화 알고리즘의 성능 향상을 위한 통계적 가설 검정 기반 리샘플링 기법의 적용 (Application of Resampling Method based on Statistical Hypothesis Test for Improving the Performance of Particle Swarm Optimization in a Noisy Environment)

  • 최선한
    • 한국시뮬레이션학회논문지
    • /
    • 제28권4호
    • /
    • pp.21-32
    • /
    • 2019
  • 군집에 대한 사회적 행동 모델에 영감을 받은 군집 최적화 알고리즘은 복잡한 최적화 문제 해결에서부터 인공 신경망의 학습에까지 활용되는 대표적인 메타휴리스틱 최적화 알고리즘 중의 하나이다. 하지만 이 알고리즘은 기본적으로 확률적 노이즈가 존재하지 않는 결정적인 환경에서 개발되었기 때문에, 많은 경우 확률적 노이즈가 존재하는 실제 문제에 적용하기에 어려움이 있었다. 본 논문에서는 이를 개선하기 위하여 불확실 평가 기법이라고 정의되는 통계적 가설 검정 기반의 리샘플링 기법을 적용한다. 이 기법을 통하여 입자 군집 최적화 알고리즘의 성능에 가장 큰 영향을 미치는 입자들의 전역 최적을 정확하게 찾으므로 노이즈 환경에서 입자들이 최적해로 보다 정확하고 빠르게 수렴하도록 한다. 다양한 벤치마크 문제들에 대한 기존 알고리즘들과의 비교 실험 결과는 제안하는 알고리즘의 개선된 성능을 입증하고, 사례 연구의 결과는 본 연구의 필요성을 강조한다. 본 연구 결과가 4차 산업혁명 시대에 디지털 트윈 등을 통한 시뮬레이션 기반 시스템 최적화에 효과적으로 적용될 수 있을 것이라 기대한다.