• 제목/요약/키워드: FireWall

검색결과 356건 처리시간 0.023초

점화원 위치 및 점화시간 변화에 따른 백드래프트 거동에 관한 수치적 연구 (A Numerical Study of the Backdraft Behavior with the Variation of the Ignition Location and Time)

  • 고민욱;오창보;한용식;도규형
    • 한국안전학회지
    • /
    • 제31권4호
    • /
    • pp.1-8
    • /
    • 2016
  • The behavior of backdraft in the compartment with different ignition locations and times was numerically investigated. The Fire Dynamics Simulator (FDS) v5.5.3 with a model-free simulation option was used in the numerical simulation of backdraft. The ignition source was located near the inside wall, at the compartment center and near the window opening, respectively. The ignition was started at the instance when the fresh air reached the ignition location or when a sufficient time passed compare to the instance of the arriving of the fresh air to the ignition location. As a result, for the ignition source was located near the inside wall, a strong fire ball was observed at once and the result was similar to the previous experimental result. For the ignition source was located at the center of the compartment, a strong fire ball was occurred and two strong fire balls were observed consecutively for the ignition time was delayed. For the ignition source was located near the window opening and longer time was given for the ignition compare the duration of the fresh air arriving to the ignition location, the rapid temperature variation was not observed because there was no flame. However, for the ignition was started at the instance when the fresh air reached the ignition location, the ignition could be initiated and a intensive fire ball was observed. The pressure measured at the upper inside part of the window opening provided a similar trend with the previous experimental result of compartment backdraft.

노즐 특성 변화에 따른 미분무수와 화염과의 상호작용에 관한 수치해석 (Numerical Analysis on Interaction between Fire Flame and Water Mist according to the Variation of Nozzle Performance)

  • 배강열;정희택;김형범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2983-2988
    • /
    • 2007
  • In the present study, the numerical investigation on the effects of water-mist characteristics has been carried out for the fire suppression mechanism. The FDS are used to simulate the interaction of fire plume and water mists, and program describes the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The numerical model is consisted of a rectangular enclosure of $L{\times}W{\times}H=1.5{\times}1.5{\times}2.0m$ and a water mist nozzle that be installed 1.8m from fire pool. In the study, the parameters of nozzle for simulation are the droplet size and the spray velocity. Finally, the droplet size influences to fire flume on fire suppression than spray velocity because of the effect of terminal velocity, and the optimal condition for fire suppression is that the droplet size and the spray velocity are $100{\mu}m$ and 20m/s, respectively.

  • PDF

미분무수 특성이 화재억제 메커니즘에 미치는 영향에 대한 수치해석적 연구 (Numerical Study on the Effects of Spray Properties of Water Mist on the Fire Suppression Mechanism)

  • 배강열;정희택;김형범
    • 한국분무공학회지
    • /
    • 제22권4호
    • /
    • pp.175-184
    • /
    • 2017
  • The numerical investigation on the effects of water-mist characteristics has been carried out for the fire suppression mechanism. The FDS are used to simulate the interaction of fire plume and water mists, and program describes the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The numerical model is consisted of a rectangular enclosure of $L{\times}W{\times}H=1.5{\times}1.5{\times}2.0m^3$ and a water mist nozzle that be installed 1.8 m from fire pool. In the present study, the parameters of nozzle for simulation are the droplet size and the spray velocity. The droplet size influences to fire flume on fire suppression more than the spray velocity because of the effect of the terminal velocity. The optimal condition for fire suppression is that the droplet size and the spray velocity are $100{\mu}m$ and 20 m/s respectively.

공연장의 소방시설 설치기준의 개선방안에 관한 연구 (A Study on the Fire Protection System in the Stage)

  • 장상태;이영재
    • 한국화재소방학회논문지
    • /
    • 제13권4호
    • /
    • pp.13-19
    • /
    • 1999
  • 건축물의 면적과 용도에 따른 형식적이고 획일적인 소방시설의 설치기준에 대하여 국내공연장들의 소방 시설 실태를 근거하여 건축물의 특이성에 적합한 방재시설에 대한 보완방법을 신축하고 있는 1900석 규모의 공연장을 사례로 하여 - 최 상층부 소방시설의 방수압력을 고려한 1차 수원의 100%와 예비 가압송수장치 -무대부 개방형 스프링쿨러에서의 측벽형 헤드 보완과 대구경 살수 헤드 -특수감지기의 설치규정 세분화와 첨단 감지기 도입 -무대부와 객석부의 방화구획용 방화막의 설치와 설치에 따른 설치방법 등에 대해 제시하였다.

  • PDF

이동식 미분무수 노즐의 소화 특성에 대한 수치 시뮬레이션 (Thermal Numerical Simulation on Fire Suppression Characteristics through Mobile Mist Spray Nozzles)

  • 배강열;정희택;김형범;정인수;김창
    • 동력기계공학회지
    • /
    • 제13권5호
    • /
    • pp.25-33
    • /
    • 2009
  • In the present study, the numerical investigation has been carried out to see the effects of water mist sprays on the fire suppression mechanism. The special-purposed program named as FDS was used to simulate the interaction of fire plume and water mists. This program solves the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The computational domain was composed of a rectangular space dimensioned as $L{\times}W{\times}H=4.0{\times}4.0{\times}2.5\;m^3$ with a mist-injecting nozzle installed 1.0 m high from the fire pool. In this paper, two types of nozzles were chosen to compare the performance of the fire suppression. Numerical results showed that the nozzle, type A, with more orifices having smaller diameters had poorer performance than the other one, type B because the flow injected through side holes deteriorated the primary flow. The fire-extinguishing time of type A was 2.6 times bigger than that of type B.

  • PDF

CHARACTERISTICS OF SMOKE CONCENTRATION PROFILES WITH UNDERGROUND UTILITY TUNNEL FIRE

  • Kim Hong Sik;Hwang In Ju;Kim Youn-Jea
    • 한국전산유체공학회지
    • /
    • 제10권1호
    • /
    • pp.94-98
    • /
    • 2005
  • Accurate prediction of the fire-induced air velocity, temperature and smoke flow in underground utility tunnel becomes more important for the optimization of design and placement of heat and smoke detectors. In order to improve the safety of underground utility tunnel systems, the behaviors of fire-induced smoke flow and temperature distributions are investigated. Especially, two different cross-sectional shapes of tunnel, such as rectangular and circular types are modeled. Also, fire source is modeled as a volumetric heat source. Three-dimensional thermal-flow characteristics in an underground tunnel are solved by means of FVM using SIMPLE algorithm. The effects of shape geometry on the fire-induced flow characteristics are graphically depicted. It is desirable that heat and smoke detectors are installed on the cables and the top of the wall.

Concept Design for Measurement against Large Fire Spreading based on BuildingDatabaseofaFolkCultureVillage

  • Umegane, Takuji;Uchida, Daisuke;Mishima, Nobuo;Wakuya, Hiroshi;Okazaki, Yasuhisa;Hayashida, Yukuo;Kitagawa, Keiko;Park, Sun-gyu;Oh, Yong-sun
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2015년도 춘계 종합학술대회 논문집
    • /
    • pp.21-22
    • /
    • 2015
  • This study aims to develop a current building condition database of an important folk culture village of South Korea considering their fire spread risk. We have selected a folk cultral village, and conducted field survey to reveal structure of buildings, materials of building wall, and roof style which make us understand current vulnerability of the village to fire spread. As a result, we made a current building condition database with map, which showed that the village had mixture of reinforced concrete and wood. Besides, we proposed a conceptual idea to prevent from large fire accident in the village.

  • PDF

소형선박 무인기관실에 적합한 소화장치 개발연구 (A Study on the Development of Fire Extinguishing System for Machinery Spaces of a Small Ship)

  • 김동석;강대선
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.130-131
    • /
    • 2005
  • A study developing the dry powder fire extinguishing system inside the simulated machinery spaces of small ship was performed. Fire tests were conducted inside the compartments having volums 8$m^3$, 2.9$m^3$ and 4.5$m^3$ respectively. The openings and fans were established on the walls of the compartments. Diesel oil was used for the test fuel. In addition fire extinguishing nozzles using dry powder were installed downward at ceiling and horizontally at the wall or conner. All fires in the test were extinguished under system activation and there was no reignition.

  • PDF

벽체 내화성능 분류체계 설정을 위한 실험적 연구 (An Experimental Study on Setup of Classification System of Fire Resistance Wall Structure)

  • 최동호;김대회
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2011년도 추계학술논문발표회 논문집
    • /
    • pp.111-114
    • /
    • 2011
  • 건축물은 화재시 그 피해를 최소화하기 위해서 주요 구조부를 일정 수준의 내화구조로 시공되어야 한다. 현재 국내에서는 건축물 주요 구조부의 내화성능을 인정한 법정 내화구조를 규정하고 있으나 외국에 비하여 내화성능 및 구조의 구분없이 일률적으로 3시간의 내화성능을 규정하고 있으며, 이 경우도 규정된 후 상당한 시일이 경과되어 최근의 재료 및 공법 등을 적절히 수용하지 못하고 있는 실정이다. 이에 따라 현재 건축물 세부구조, 부위별로 내화성능을 세분화하여 규정할 필요가 있으며. 이를 위해 내화구조의 시험 자료를 근거로 한 경제적, 효율적 제도개선이 요구된다. 이에 본 연구에서는 국내의 법정내화구조로 규정된 벽체 구조를 대상으로 내화성능을 평가하여 각 구조별로 법정내화구조를 세분화한 기초자료를 제시하였다.

  • PDF

화재방호 설비 설계 자동화를 위한 선행연구 및 기술 분석 (Literature Review and Current Trends of Automated Design for Fire Protection Facilities)

  • 홍성협;최두찬;이광호
    • 토지주택연구
    • /
    • 제11권4호
    • /
    • pp.99-104
    • /
    • 2020
  • This paper presents the recent research developments identified through a review of literature on the application of artificial intelligence in developing automated designs of fire protection facilities. The literature review covered research related to image recognition and applicable neural networks. Firstly, it was found that convolutional neural network (CNN) may be applied to the development of automating the design of fire protection facilities. It requires a high level of object detection accuracy necessitating the classification of each object making up the image. Secondly, to ensure accurate object detection and building information, the data need to be pulled from architectural drawings. Thirdly, by applying image recognition and classification, this can be done by extracting wall and surface information using dimension lines and pixels. All combined, the current review of literature strongly indicates that it is possible to develop automated designs for fire protection utilizing artificial intelligence.