• Title/Summary/Keyword: Fire-fighting robot

Search Result 20, Processing Time 0.025 seconds

Development of Eire Extinguishment and Life-saving Technology for Indoor Environment (실내 화재 진압 및 인명구조 기술 개발)

  • Oh, Ju-Hwan;Choi, Jae-Seck;Lee, Woo-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.108-113
    • /
    • 2007
  • The robot introduced in this paper is the Fire-Extinguishing Rescue Robot for indoor work which is considered to be a part of the Operation for Future Developmental Power. It is briefly introduced about the background of how we began this project, our goals, where we are today and what we would like to achieve from now on. Main contents include introduction to the equipments for Fire-Extinguishing Rescue robots that have been developed in advanced countries and the compositional concept of the developmental process, the GUI schematic, searching methods for fire inside a house, mechanical schematic and the present conditions of how the core technologies are developing through.

Performance Evaluation of Search Robot Prototypes for Special Disaster Areas (특수재난지역 정찰로봇 시제품의 성능평가연구)

  • Kwark, Jihyun
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.109-118
    • /
    • 2015
  • Recently, three kinds of search robot prototypes were developed to assume the role of fire fighters for search and rescue missions in special disaster areas with high heat, smoke, toxic gases, or radioactivity. To accomplish search missions, these robots should be able to endure heat, overcome various obstacles, suppress fires, and see through dense smoke. This study investigated the heat resistance, practicality, and fire fighting capacity of these robots. The results show that the small and middle-sized robots were resistant to surrounding temperatures of $100{\sim}200^{\circ}C$, and the fire-fighter-riding robot could endure up to $500^{\circ}C$ for half an hour. The fire-fighter-riding robot showed excellent extinguishing performance on an A-10 class fire model, which was extinguished within 3 min. The robots also showed various capacities for overcoming obstacles and are expected to play an active role in various special disaster areas.

A Sensor Module Overcoming Thick Smoke through Investigation of Fire Characteristics (화재 특성 고찰을 통한 농연 극복 센서 모듈)

  • Cho, Min-Young;Shin, Dong-In;Jun, Sewoong
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.237-247
    • /
    • 2018
  • In this paper, we describe a sensor module that monitors fire environment by analyzing fire characteristics. We analyzed the smoke characteristics of indoor fire. Six different environments were defined according to the type of smoke and the flame, and the sensors available for each environment were combined. Based on this analysis, the sensors were selected from the perspective of firefighter. The sensor module consists of an RGB camera, an infrared camera and a radar. It is designed with minimum weight to fit on the robot. the enclosure of sensor is designed to protect against the radiant heat of the fire scene. We propose a single camera mode, thermal stereo mode, data fusion mode, and radar mode that can be used depending on the fire scene. Thermal stereo was effectively refined using an image segmentation algorithm, SLIC (Simple Linear Iterative Clustering). In order to reproduce the fire scene, three fire test environments were built and each sensor was verified.

Mission Scenario-based Design of Hydraulic Manipulators for Armored Robot Systems (미션 시나리오기반 장갑형 로봇시스템 유압매니퓰레이터 설계)

  • Jeong, Dongtak;Kim, Cheol;Kim, Ju Hyun;Suh, Jinho;Jin, Maolin
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.51-60
    • /
    • 2017
  • In this study to develop disaster response robot in complex disaster site, we present the design of hydraulic manipulators for armored robot systems. To this end, we performed voice of customer researches with firefighters and rescue personnel. We created and analyzed the mission scenario of firefighters and rescue personnel in complex disaster situations, and derived the required functions of the robot to successfully perform missions. A heavy-duty, heat resistant, dexterous hydraulic robot manipulators is designed to realize the required functions. The designed robot has been verified through simulations and analysis in terms of the working area of the robot, actuating torques, and temperature analysis.

Finite Element Analysis and Material Characteristics of Fire Spray Nozzle for Ship Engine Room (선박 엔진룸의 소화용 분무노즐의 재료특성 및 유동해석)

  • Bae, Dong-Su;Lee, Jin-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.553-559
    • /
    • 2019
  • Various types of nozzles have been used to cope with fire in ships. However, in Korea, precise nozzles that perform fine spraying function are required for fire fighting in case of fire in a ship, and most of these nozzles depend on imports. Therefore, in this study, we developed various types of nozzles to develop the water spray nozzle for evolving fire in the engine room of the ship, and developed an optimal nozzle through flow analysis and fire test. For this purpose, we selected the materials that can satisfy the characteristics of existing nozzle materials and developed the design technology and processing technology in the nozzle considering fluid flow to achieve optimal water spraying performance. In order to develop an optimal nozzle, the flow through the finite element analysis was first analyzed and the nozzle was manufactured. As a result of flow analysis of the developed nozzle, the maximum velocity at the outlets of four holes at 0.3 MPa was about 3m/s and about 0.15 MPa. In addition, when the pressure at the inlet was 1.8 MPa, it showed the outlet speed of about 18m/s and a pressure of 1.2 MPa.

Plan for the Development of a Standardized Dummy for Persons in Need of Rescue in a Confined Space (밀폐공간 구조 요구자를 위한 더미 표준화 개발 방안)

  • Choi, Seo-Yeon;Rie, Dong-Ho;Kim, Hyung-Jun
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.4
    • /
    • pp.99-105
    • /
    • 2016
  • This study was conducted to develop a dummy in an environment similar to the human body, to prepare a standard for evaluation and to present the process of the production in order to evaluate the performance of the robot that can detect the persons needing rescue in a confined space, who are difficult for fire-fighting officials to rescue in case of fire and disaster. As a result, a standard for evaluation was developed and standardized into four parts 'Normal,' 'Risk Stage 1,' 'Risk Stage 2' and 'Risk Stage 3'based on the number of breath cycles, carbon dioxide concentration, core temperature and criteria for hearing to recognize the voice. In addition, in order to produce a dummy, fever, breathing capacity and voice output function were compared and analyzed. This study has significance that it built up basic data of the method of producing the actual dummy, by presenting characteristics and controlling methods using the waterproof insulation heating coil for the function, solenoid valve for the consecutive output of breathing capacity and USB program sound board for voice output.