• 제목/요약/키워드: Fire resistance properties

검색결과 306건 처리시간 0.026초

화재시 온도증가로 인한 RC 슬래브의 강도 특성 (Strength Properties of RC Slabs under Elevated Temperatures from Fire)

  • 임초롱;정철헌;김유석
    • 한국안전학회지
    • /
    • 제25권4호
    • /
    • pp.48-60
    • /
    • 2010
  • The fire resistance performance of 2 RC slabs after exposure to the ISO-834 fire standard without loading has been experimentally investigated. A Comparison is made of the fire resistance performance between RC slabs without PP(polypropylene) fibers and RC slabs with PP fibers. From the fire test results, the presence of PP fibers in RC slabs can reduce spalling and enhance their fire resistance. Until now, the determination of fire resistance of reinforced concrete(RC) slabs has essentially been based on tabulated data. According to ACI 216 code and EUROCODE 2, the design of concrete structures is essentially based on tabulated data for appropriate concrete cover and various fire durations. From the comparison between fire test results and codes, current fire design provisions of codes such as the ACI 216 and the EUROCODE 2 are unconservative for estimating mechanical properties of RC slabs at elevated temperatures.

구조용 압연강(SS 400)의 고온 기계적 특성을 이용한 기둥부재의 내화성능 평가 (Evaluation of Fire Resistance Using Mechanical Properties at High Temperature for Steel Column Made of Rolled Steels (SS 400))

  • 권인규;신순기
    • 대한금속재료학회지
    • /
    • 제49권9호
    • /
    • pp.671-677
    • /
    • 2011
  • Steel columns used in steel buildings are inclined to lose their strength when exposed to severe fire conditions, so fire resistance is required in most countries to protect against loss of life and building collapses. In Korea, the fire resistance of columns can be obtained by the fire test defined in KS F 2257-1, 7. The fire resistance of a steel column should be evaluated in terms of the column's conditions, such as various section types (H-section, hollow-section), the column's length and boundary conditions, and whether it is fixed or hinged. However, fire testing of steel columns is usually conducted on one standard-sized H-section over 3,000 mm, and the result is used as the column's fire resistance. This is not a reasonable way to ensure that a building can withstand fire conditions. In this study, to evaluate the possibility of calculating the fire resistance of steel columns with material properties of high tensile strength of SS 400, both load-bearing fire tests and calculation of steel temperatures were carried out. The results of temperature calculation were very similar to those obtained by fire test.

Fire Resistance Studies on High Strength Steel Structures

  • Wang, Wei-Yong;Xia, Yue;Li, Guo-Qiang
    • 국제초고층학회논문집
    • /
    • 제7권4호
    • /
    • pp.287-298
    • /
    • 2018
  • High strength steels have been widely applied in recent years due to high strength and good working performance. When subjected to fire conditions, the strength and elastic modulus of high strength steels deteriorate significantly and hence the load bearing capacity of structures reduces at elevated temperatures. The reduction factors of mechanical properties of high strength steels are quite different from mild steels. Therefore, the fire design methods deduced from mild steel structures are not applicable to high strength steel structures. In recent ten years, the first author of this paper has carried out a lot of fundamental research on fire behavior of high strength steels and structures. Summary of these research is presented in this paper, including mechanical properties of high strength steels at elevated temperature and after fire exposure, creep response of high strength steels at elevated temperature, residual stresses of welded high strength steel member after fire exposure, fire resistance of high strength steel columns, fire resistance of high strength steel beams, local buckling of high strength steel members, and residual strength of high strength steel columns after fire exposure. The results show that the mechanical properties of high strength steel in fire condition and the corresponding fire resistance of high strength steel structures are different from those of mild steel and structures, and the fire design methods recommended in current design codes are not applicable to high strength steel structures.

방화용 실런트 성능 평가 방법 연구 (A study for the test method of fire resistance construction sealant)

  • 안명수;정진영;배기선
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.179-182
    • /
    • 2013
  • Many kinds of fire-stop sealants have been used for joint sealing, cable penetration part sealing and fireproof structure finishing etc in building sectors which need water-proofing and fire-stop properties. But, fire-stop sealant itself has no specific industry standards in Korea even though there are so many required properties for the application. So, in this study, for the evaluation, we adopted and applied UL standard 94(UL 94) which is commonly used for the fire retardant testing in inflammable materials like plastics and rubbers in electronics industry. In this study, we demonstrated fire resistance properties of each fire-stop sealants which varied with different formulation, thickness and origins available in Korea. Overall, fire stop sealant had better fire resistance performance than normal construction sealant. And the thicker the material, the better the fire resistance performance was. Because there is no national or industry guideline for fire stop sealant itself, each sealant products showed different level of performances under UL94 desigation. Even certain product had very poor fire proof propeties although it claims it can be used for the application.

  • PDF

현장 적용을 위한 섬유혼입 고강도콘크리트의 내화특성에 관한 실험적 연구 (An Experimental Study on the Fire Resistance Properties of High Strength Concrete using Fiber for Field Application)

  • 김용로;송영찬;정양희;김욱종;이도범
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 추계 학술논문 발표대회
    • /
    • pp.187-191
    • /
    • 2008
  • It is necessary to develop a technology for effectively controling explosive spalling of high strength concrete caused increasing construction of high rise building and putting up the fireproof standard of high strength concrete by MLTM (Ministry of Land, Transport and Maritime Affairs). Accordingly, it was investigated basic properties such as slump, air content and compressive strength, and fire resistance properties of high strength concrete using polypropylene fiber for field application as a countermeasure for explosive spalling of concrete on fire in this study, As a test result, it was confirmed that PP fiber is available as fire resistance method of high strength concrete.

  • PDF

ECC 영구거푸집의 내화성능 및 역학적 특성에 관한 실험적 연구 (An Experimental Study on the Fire Resistance and Mechanical Properties of ECC Permanent Form)

  • 김용로;송영찬;오재근;김재환;김욱종;이도범
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 춘계 학술논문 발표대회 산업계
    • /
    • pp.75-78
    • /
    • 2009
  • It was investigated fire resistance properties and mechanical properties of high strength concrete column using ECC(Engineered Cementitious Composites) permanent form by KS F 2257 Methods of fire resistance test for elements of building construction and compression test for application of precast concrete column method of high rise building in this study. As a test result, it was appeared that ECC permanent form is available as fire resistance method of high strength concrete and new precast concrete construction method for facilitating construction of high rise building.

  • PDF

고강도 콘크리트의 내화 특성에 관한 기존연구 고찰 및 실험적 연구 (State-of-the-Art Research and Experimental Assessment on Fire-Resistance Properties of High Strength Concrete)

  • 김우석;강현구;김화중
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권3호
    • /
    • pp.28-39
    • /
    • 2014
  • 본 연구에서는 우선 화재에 노출된 고강도 콘크리트의 내화특성과 폭렬 메커니즘을 규명한 기존 국내외 연구자들의 연구문헌들을 심도 깊게 고찰하였다. 그 후 고온을 받은 고강도 콘크리트에 대한 국내외 연구자들의 주요 실험 변수를 분석하여 가장 최적의 변수를 설정하였으며 이를 토대로 하여 100MPa급 고강도 콘크리트의 내화 특성을 규명하기 위한 내화실험을 계획하였다. 또한 기존 연구의 실험결과를 분석한 결과 폭렬방지에 효과가 있는 것으로 알려져 있는 PP섬유와 친수성 재료로서 시멘트 입자와 부착성능이 우수하고 워커빌리티를 개선할 수 있는 NY섬유를 혼합한 신재료 HB섬유를 섬유혼입률 0.05%로 정해 배합설계에 반영하였다. 이러한 배합설계로 타설한 총 48개의 공시체를 28일 양생기간 후 온도변화 ($100^{\circ}C{\sim}700^{\circ}C$)에 따른 고강도 콘크리트의 역학적 특성을 분석하기 위해 화재를 받은 후 냉간상태에서의 내화실험을 수행하였으며 이를 통해 고강도 콘크리트의 내화 특성을 분석하였다.

Enhancing fire resistance of steel bridges through composite action

  • Kodur, Venkatesh K.R.;Gil, Augusto
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.353-362
    • /
    • 2022
  • Bridge fire hazard has become a growing concern over the last decade due to the rapid increase of ground transportation of hazardous materials and resulting fire incidents. The lack of fire safety provisions in steel bridges can be a significant issue owing steel thermal properties that lead to fast degradation of steel properties at elevated temperatures. Alternatively, the development of composite action between steel girders and concrete decks can increase the fire resistance of steel bridges and meet fire safety requirements in some applications. This paper reviews the fire problem in steel bridges and the fire behavior of composite steel-concrete bridge girders. A numerical model is developed to trace the fire response of a typical bridge girder and is validated using measurements from fire tests. The selected bridge girder is composed by a hot rolled steel section strengthened with bearing stiffeners at midspan and supports. A concrete slab sitting on the top of the girder is connected to the slab through shear studs to provide full composite action. The validated numerical model was used to investigate the fire resistance of real scale bridge girders and the effect of the composite action under different scenarios (standard and hydrocarbon fires). Results showed that composite action can significantly increase the fire resistance of steel bridge girders. Besides, fire severity played an important role in the fire behavior of composite girders and both factors should be taken into consideration in the design of steel bridges for fire safety.

Safety Evaluation of Fire Resistant Extruded Panel for Partition Wall System

  • Choi, Duck-Jin;Kim, Jin-Man
    • 한국건축시공학회지
    • /
    • 제12권6호
    • /
    • pp.586-595
    • /
    • 2012
  • While the extruded cement panel has many advantages compared to drywall, it has limited applicability in buildings due to its low fire resistance. However, an extruded panel in which the fire resistance has been dramatically enhanced through the addition of a-hemihydrate gypsum is expected to become widely applied as a partition wall or interior material for buildings. To ensure its applicability, certain safety requirements for use, such as the leaning load by residents, the impact by indoor articles, and the fire, need to be taken into consideration. The purpose of this study is to review the impact load resistance, horizontal load resistance, and fire resistance as required safety properties for the partition wall and interior materials of the extruded panel that includes a-hemihydrate gypsum. The results of this study show that the impact load resistance of the extruded panel that includes a-hemihydrate gypsum achieves SD grade for industrial buildings, and the horizontal impact load resistance achieves HD grade for public buildings. In addition, it provides fire-resistance for approximately 7 minutes longer than the existing extruded cement panel. Based on this result, it is confirmed the extruded panel incorporating a-hemihydrate gypsum has adequate safety properties for use as partition wall or interior material.

폴리올레핀계 구조용 합성섬유보강 콘크리트의 휨성능 및 화재 저항성 (Flexural Performance and Fire Resistance of Polyolefin Based Structural Synthetic Fiber Reinforced Concrete)

  • 박찬기;원종필
    • 한국농공학회논문집
    • /
    • 제50권1호
    • /
    • pp.49-57
    • /
    • 2008
  • This study evaluated the flexural properties and fire resistance of polyolefm based structural synthetic fiber reinforced concrete. The effects of differing fiber length, dimension and fiber volume fraction were studied. Flexural and fire resistance test were conducted in accordance with the JCI SF-4 and RABT time heating temperature curve, respectively. The Flexural test results indicated that the polyolefln based structural fiber reinforcement showed an ability to increase the flexural toughness and good fire resistance significantly(as compared to steel fiber reinforcement).