• Title/Summary/Keyword: Fire image detection

Search Result 132, Processing Time 0.033 seconds

Design Of a Video-Base Fire Detection System Using Texture and Color Spatial Distribution Information (질감 및 색채의 공간 분포 정보를 이용한 비디오 기반 화재감지 시스템)

  • Piao, Feng-Ji;Ryu, Ji-Goo;Moon, Kwang-Seok;Kim, Jong-Nam;Ung, Jang-Dae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.331-334
    • /
    • 2010
  • This paper proposes a new design of a video-base fire detection system using texture and color spatial distribution information. The video sequences used are taken in different days with different lighting conditions having different backgrounds. The time complexity of most previous vision-based fire detection techniques are very high due to lengthy programing. To overcome the problems of lengthy codes and time complexity, in this algorithm, at first we normalize the video image frames by size and color information. Then the spatial distribution of the color information is used to extract the candidate regions, later using visual texture of the fire, we detect the fire regions. The experimental results show an real-time fire detection over thousands of image frames, and have higher detection rate when compared to the conventional fire detection techniques.

  • PDF

Comparison of Fire Detection Performance according to the Number of Bounding Boxes for YOLOv5 (YOLOv5 학습 시 바운딩 박스 개수에 따른 화재 탐지 성능 비교)

  • Sung, YoungA;Yi, Hyoun-Sup;Jang, Si-Woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.50-53
    • /
    • 2022
  • In order to detect an object in yolv5, a process of annotating location information on an existing image is required when learning an image. The most representative method is to draw a bounding box on an image to store location information as meta information. However, if the boundary of the object is ambiguous, it will be difficult to make a bounding box. A representative example would be to classify parts that are not fire and parts that are fire. Therefore, in this paper, images of 100 samples judged to have caught fire were learned by varying the number of boxes. The results showed better fire detection performance in the model where the bounding box was trained by annotating it with three boxes by segmenting it slightly more than annotating it with one box by holding the edge as large as possible during annotating it with one box.

  • PDF

Implementation of Intelligent Fire-Detection Systems Using DSP (DSP를 이용한 지능형 화재검출시스템 구현)

  • Kim, Hyun-tae;Song, Chong-kwan;Park, Jang-sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.411-414
    • /
    • 2009
  • Many victims and property damages are caused in fires every year. In this paper, intelligent fire-detection systems with embedded fire-detection algorithms for early fire detection and alarm is proposed to reduce fire damages by using image processing technique, high speed digital signal processor(DSP) technique, and information technique. The fire detection algorithms used for the proposed systems consist of flame and smoke detection algorithms. If flame or smoke is detected respectively, the corresponding alarm signal can be transferred to management computer. And if flame and smoke is detected simultaneously, the fire alarm signal shall be generated. Through several experiments in the physical environment, it is shown that the proposed system works well without malfunction.

  • PDF

Fire-Flame Detection Using Fuzzy Logic (퍼지 로직을 이용한 화재 불꽃 감지)

  • Hwang, Hyun-Jae;Ko, Byoung-Chul
    • The KIPS Transactions:PartB
    • /
    • v.16B no.6
    • /
    • pp.463-470
    • /
    • 2009
  • In this paper, we propose the advanced fire-flame detection algorithm using camera image for better performance than previous sensors-based systems which is limited on small area. Also, previous works using camera image were depend on a lot of heuristic thresholds or required an additional computation time. To solve these problems, we use statistical values and divide image into blocks to reduce the processing time. First, from the captured image, candidate flame regions are detected by a background model and fire colored models of the fire-flame. After the probability models are formed using the change of luminance, wavelet transform and the change of motion on time axis, they are used for membership function of fuzzy logic. Finally, the result function is made by the defuzzification, and the probability value of fire-flame is estimated. The proposed system has shown better performance when it compared to Toreyin's method which perform well among existing algorithms.

Implementation of a Deep Learning based Realtime Fire Alarm System using a Data Augmentation (데이터 증강 학습 이용한 딥러닝 기반 실시간 화재경보 시스템 구현)

  • Kim, Chi-young;Lee, Hyeon-Su;Lee, Kwang-yeob
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.468-474
    • /
    • 2022
  • In this paper, we propose a method to implement a real-time fire alarm system using deep learning. The deep learning image dataset for fire alarms acquired 1,500 sheets through the Internet. If various images acquired in a daily environment are learned as they are, there is a disadvantage that the learning accuracy is not high. In this paper, we propose a fire image data expansion method to improve learning accuracy. The data augmentation method learned a total of 2,100 sheets by adding 600 pieces of learning data using brightness control, blurring, and flame photo synthesis. The expanded data using the flame image synthesis method had a great influence on the accuracy improvement. A real-time fire detection system is a system that detects fires by applying deep learning to image data and transmits notifications to users. An app was developed to detect fires by analyzing images in real time using a model custom-learned from the YOLO V4 TINY model suitable for the Edge AI system and to inform users of the results. Approximately 10% accuracy improvement can be obtained compared to conventional methods when using the proposed data.

Comparative Analysis of YOLOv8 Object Detection Model Performance in Fire Detection in Traditional Markets Using Thermal Cameras (열화상 카메라를 이용한 전통시장 화재 감지에서 YOLOv8 객체 탐지 모델의 성능 비교 분석)

  • Ko Ara;Cho Jungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.117-126
    • /
    • 2023
  • Traditional markets, formed naturally, often feature aged buildings and facilities that are susceptible to fire. However, the lack of adequate fire detection systems in these markets can easily lead to large-scale fires upon ignition. Therefore, this study was conducted with the aim of detecting fires in traditional markets, utilizing thermal imaging cameras for data collection and the YOLOv8 model for object detection experiments. Data were collected in the night markets within traditional markets of xx city and by simulating fire scenarios. A comparative analysis of the Nano and XL models of YOLOv8 revealed that the XL model is more effective in detecting fires. The XL model not only demonstrated higher accuracy in correctly identifying flames but also tended to miss fewer fires compared to the Nano model. In the case of objects other than flames, the XL model showed superior performance over the Nano model. Taking all these factors into account, it is anticipated that with further data collection and improvement in model performance, a suitable fire detection system for traditional markets can be developed.

Fire detection in video surveillance and monitoring system using Hidden Markov Models (영상감시시스템에서 은닉마코프모델을 이용한 불검출 방법)

  • Zhu, Teng;Kim, Jeong-Hyun;Kang, Dong-Joong;Kim, Min-Sung;Lee, Ju-Seoup
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.35-38
    • /
    • 2009
  • The paper presents an effective method to detect fire in video surveillance and monitoring system. The main contribution of this work is that we successfully use the Hidden Markov Models in the process of detecting the fire with a few preprocessing steps. First, the moving pixels detected from image difference, the color values obtained from the fire flames, and their pixels clustering are applied to obtain the image regions labeled as fire candidates; secondly, utilizing massive training data, including fire videos and non-fire videos, creates the Hidden Markov Models of fire and non-fire, which are used to make the final decision that whether the frame of the real-time video has fire or not in both temporal and spatial analysis. Experimental results demonstrate that it is not only robust but also has a very low false alarm rate, furthermore, on the ground that the HMM training which takes up the most time of our whole procedure is off-line calculated, the real-time detection and alarm can be well implemented when compared with the other existing methods.

A Study on Flame and Smoke Detection Method of a Tunnel Fire (터널 화재의 화염 및 연기 검출 기법 연구)

  • Lee, Jeong-Hun;Lee, Byoung-Moo;Han, Dong-Il
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1027-1028
    • /
    • 2008
  • In this paper, we proposed image-processing technique for automatic real-time fire and smoke detection in tunnel fire environment. To minimize false detection of fire in tunnel we used motion information of video sequence. And this makes it possible to detect exact position of event in early stage with detection, test, and verification procedures. In addition, by comparing false detection elimination results of each step, we have proved the validity and efficiency of proposed algorithm.

  • PDF

A Fire Deteetion System based on YOLOv5 using Web Camera (웹카메라를 이용한 YOLOv5 기반 화재 감지 시스템)

  • Park, Dae-heum;Jang, Si-woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.69-71
    • /
    • 2022
  • Today, the AI market is very large due to the development of AI. Among them, the most advanced AI is image detection. Thus, there are many object detection models using YOLOv5.However, most object detection in AI is focused on detecting objects that are stereotyped.In order to recognize such unstructured data, the object may be recognized by learning and filtering the object. Therefore, in this paper, a fire monitoring system using YOLOv5 was designed to detect and analyze unstructured data fires and suggest ways to improve the fire object detection model.

  • PDF

Effects of Preprocessing and Feature Extraction on CNN-based Fire Detection Performance (전처리와 특징 추출이 CNN기반 화재 탐지 성능에 미치는 효과)

  • Lee, JeongHwan;Kim, Byeong Man;Shin, Yoon Sik
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.4
    • /
    • pp.41-53
    • /
    • 2018
  • Recently, the development of machine learning technology has led to the application of deep learning technology to existing image based application systems. In this context, some researches have been made to apply CNN (Convolutional Neural Network) to the field of fire detection. To verify the effects of existing preprocessing and feature extraction methods on fire detection when combined with CNN, in this paper, the recognition performance and learning time are evaluated by changing the VGG19 CNN structure while gradually increasing the convolution layer. In general, the accuracy is better when the image is not preprocessed. Also it's shown that the preprocessing method and the feature extraction method have many benefits in terms of learning speed.