Acknowledgement
"본 연구는 과학기술정보통신부 및 정보통신기획평가원의 지역지능화혁신인재양성(Grand ICT연구센터) 사업의 연구결과로 수행되었음" (IITP- 2022-2020-0-01791). 또한, 본 논문은 부산광역시 및 (재)부산인재평생교육진흥원의 BB21플러스 사업으로 지원된 연구임.
Today, the AI market is very large due to the development of AI. Among them, the most advanced AI is image detection. Thus, there are many object detection models using YOLOv5.However, most object detection in AI is focused on detecting objects that are stereotyped.In order to recognize such unstructured data, the object may be recognized by learning and filtering the object. Therefore, in this paper, a fire monitoring system using YOLOv5 was designed to detect and analyze unstructured data fires and suggest ways to improve the fire object detection model.
오늘날 AI의 발전으로 인하여 AI 시장은 매우 커지고 있다. 그중 가장 많이 발전된 AI는 이미지 탐지이다. 그리하여 YOLOv5을 이용하는 많은 객체 탐지 모델이 존재한다. 하지만 AI의 대부분의 객체 탐지는 정형화된 객체 탐지에 중점이 잡혀 있으며 비정형 객체에 대한 연구는 상대적으로 적은 편이다. 따라서 본 논문에서는 YOLOv5을 이용한 화재 감시 시스템을 설계하여 비정형 화재 데이터를 탐지 및 분석하여 화재 탐지시스템을 설계하고 구현하였다.
"본 연구는 과학기술정보통신부 및 정보통신기획평가원의 지역지능화혁신인재양성(Grand ICT연구센터) 사업의 연구결과로 수행되었음" (IITP- 2022-2020-0-01791). 또한, 본 논문은 부산광역시 및 (재)부산인재평생교육진흥원의 BB21플러스 사업으로 지원된 연구임.