• Title/Summary/Keyword: Fire design model

Search Result 241, Processing Time 0.026 seconds

Simulating the Response of a 10-Storey Steel-Framed Building under Spreading Multi-Compartment Fires

  • Jiang, Jian;Zhang, Chao
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.389-396
    • /
    • 2018
  • This paper presents a numerical investigation on the structural response of a multi-story building subjected to spreading multi-compartment fires. A recently proposed simple fire model has been used to simulate two spreading multi-compartment fire scenarios in a 10-story steel-framed office building. By assuming simple temperature rising and distribution profiles in the fire exposed structural components (steel beams, steel column and concrete slabs), finite element simulations using a three-dimensional structural model has been carried out to study the failure behavior of the whole structure in two multi-compartment fire conditions and also in a standard fire condition. The structure survived the standard fire but failed in the multi-compartment fire. Whilst more accurate fire models and heat transfer models are needed to better predict the behaviors of structures in realistic fires, the current study based on very simple models has demonstrated the importance and necessity of considering spreadingmulti-compartment fires in fire resistance design of multi-story buildings.

A Numerical Investigation on Restrained High Strength Q460 Steel Beams Including Creep Effect

  • Wang, Weiyong;Zhang, Linbo;He, Pingzhao
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1497-1507
    • /
    • 2018
  • Most of previous studies on fire resistance of restrained steel beams neglected creep effect due to lack of suitable creep model. This paper presents a finite element model (FEM) for accessing the fire resistance of restrained high strength Q460 steel beams by taking high temperature Norton creep model of steel into consideration. The validation of the established model is verified by comparing the axial force and deflection of restrained beams obtained by finite element analysis with test results. In order to explore the creep effect on fire response of restrained Q460 steel beams, the thermal axial force and deflection of the beams are also analyzed excluding creep effect. Results from comparison infer that creep plays a crucial role in fire response of restrained steel beam and neglecting the effect of creep may lead to unsafe design. A set of parametric studies are accomplished by using the calibrated FEM to evaluate the governed factors influencing fire response of restrained Q460 steel beams. The parametric studies indicate that load level, rotational restraint stiffness, span-depth ratio, heating rate and temperature distribution pattern are key factors in determining fire resistance of restrained Q460 steel beam. A simplified design approach to determine the moment capacity of restrained Q460 steel beams is proposed based on the parametric studies by considering creep effect.

Designing method for fire safety of steel box bridge girders

  • Li, Xuyang;Zhang, Gang;Kodur, Venkatesh;He, Shuanhai;Huang, Qiao
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.657-670
    • /
    • 2021
  • This paper presents a designing method for enhancing fire resistance of steel box bridge girders (closed steel box bridge girder supporting a thin concrete slab) through taking into account such parameters namely; fire severity, type of longitudinal stiffeners (I, L, and T shaped), and number of longitudinal stiffeners. A validated 3-D finite element model, developed through the computer program ANSYS, is utilized to go over the fire response of a typical steel box bridge girder using the transient thermo-structural analysis method. Results from the numerical analysis show that fire severity and type of longitudinal stiffeners welded on bottom flange have significant influence on fire resistance of steel box bridge girders. T shaped longitudinal stiffeners applied on bottom flange can highly prevent collapse of steel box bridge girders towards the end of fire exposure. Increase of longitudinal stiffeners on bottom flange and web can slightly enhance fire resistance of steel box bridge girders. Rate of deflection-based criterion can be reliable to evaluate fire resistance of steel box bridge girders in most fire exposure cases. Thus, T shaped longitudinal stiffeners on bottom flange incorporated into bridge fire-resistance design can significantly enhance fire resistance of steel box bridge girders.

Approximate Optimization with Discrete Variables of Fire Resistance Design of A60 Class Bulkhead Penetration Piece Based on Multi-island Genetic Algorithm (다중 섬 유전자 알고리즘 기반 A60 급 격벽 관통 관의 방화설계에 대한 이산변수 근사최적화)

  • Park, Woo-Chang;Song, Chang Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.33-43
    • /
    • 2021
  • A60 class bulkhead penetration piece is a fire resistance system installed on a bulkhead compartment to protect lives and to prevent flame diffusion in a fire accident on a ship and offshore plant. This study focuses on the approximate optimization of the fire resistance design of the A60 class bulkhead penetration piece using a multi-island genetic algorithm. Transient heat transfer analysis was performed to evaluate the fire resistance design of the A60 class bulkhead penetration piece. For approximate optimization, the bulkhead penetration piece length, diameter, material type, and insulation density were considered discrete design variables; moreover, temperature, cost, and productivity were considered constraint functions. The approximate optimum design problem based on the meta-model was formulated by determining the discrete design variables by minimizing the weight of the A60 class bulkhead penetration piece subject to the constraint functions. The meta-models used for the approximate optimization were the Kriging model, response surface method, and radial basis function-based neural network. The results from the approximate optimization were compared to the actual results of the analysis to determine approximate accuracy. We conclude that the radial basis function-based neural network among the meta-models used in the approximate optimization generates the most accurate optimum design results for the fire resistance design of the A60 class bulkhead penetration piece.

A Study on the appliance of performance based design to the automatic fire alarm system in clean room facility (클린룸 자동화재탐지설비의 성능위주 방재설계 적용에 관한 고찰)

  • Kim, Dong-Sung;Hwang, Cheol-Seung;Lee, Sang-Gon;Cho, Cheol-Won;Lee, Te-Shik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.513-517
    • /
    • 2007
  • This study is to establish the appliance model for the automatic fire alarm system in clean room within the framework of the performance based design. Because of the environmental and dimensional characters of clean room, this space is exposed to fire and toxic damage, so it is very important to notify the occupants of these dangerous situations.

  • PDF

A Smoke Management System Design For Semiconductor Fabrication Facilities (반도체 공장의 제연설계)

  • ;Michael J. Ferreira
    • Fire Science and Engineering
    • /
    • v.14 no.4
    • /
    • pp.23-28
    • /
    • 2000
  • A performance-based design of smoke management systems for semiconductor fabrication facilities is described in this paper. The example of one such facility is discussed. Performance criteria for smoke control systems were established, effective smoke removal system features were identified and optimal system exhaust capacity requirements were developed by applying engineering tools including Fire Dynamic Simulator model. Considering the fact that the absence of relevant design guide, codes for consensus standards for semiconductor smoke design in Korea and United States this performance based approach can and should be applied to other fabrication facilities designs.

  • PDF

A Numerical Analysis for Fire Spread Mechanism of Residential Building Fire (주거용 건축물의 화염전파 현상에 대한 수치해석적 검토)

  • Ahn, Chan-Sol;Kim, Heung-Youl;You, Yong-Ho;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.31-37
    • /
    • 2012
  • This study is intended to present a computational thermal model for a residential building. As the Performance Based Design is more popular, fire-intensity and fire-load have turned out to be very important factors for building design and can be predicted through some computational work. To predict and estimate the fire properties of a residential fire, we made some numerical models of combustibles and residential building. In a bid to validate the estimate values, computational analysis results from numerical models were compared with real fire tests. For computational analysis, the Fire Dynamics Simulator (FDS) was used with Large Eddy Simulation (LES) model for turbulence. Consequently, fire-intensity was well predicted and flash-over of rooms were successfully estimated.

A Forecast Study on the Fire Growth Rate and Investigation of Combustible for Fire Safety Design in Building (건축물 화재안전설계를 위한 주요가연물조사 및 화재성장율 예측에 관한 연구)

  • Seo, Dong-Goo;Kim, Dong-Eun;Kim, Bong-Chan;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.133-135
    • /
    • 2012
  • The Fire growth rate(kW/s2) is significant impact on initial fire behavior in fire safety design of buildings. As a result of domestic existing combustibles, this study analyzed considering matters in techniques for calculating caloric values, and then made an investigation sheet. By utilizing written combustion sheets, the study could suggest a standard model at common houses and dense ones after getting caloric value information in dense ones. As a result, fire growth rate is experiment 1(0.01), experiment 2(0.0048), FDS(0.0072), MATSUYAMA equation(0.0144).

  • PDF

Design of Large Cone Calorimeter for the Fire Study (화재연구를 위한 대형 콘 칼로리미터의 설계)

  • Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.65-71
    • /
    • 2006
  • Some major properties such as a heat release rate have been measured experimentally for the validation of fire model and the clarification of fire phenomena as the study is more rigorous recently. Although the reduced-scale experiment also provides the basic data and the physical understanding in fire study, it is not enough to explain real fire problem directly because there is no exact analogy theory between a real fire and the reduced scale model. Therefore, large cone calorimeter have been built and used in a few foreign countries for the measurement of large scale fire. This paper addressed the theoretical background and the description of key features in the design of the facility. It will be a useful guide for implementation of the large scale cone calorimeter in the future.

Analysis of end-plate connections at elevated temperatures

  • Lin, Shuyuan;Huang, Zhaohui;Fan, Mizi
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.81-101
    • /
    • 2013
  • In this paper a robust 2-noded connection element has been developed for modelling the bolted end-plate connection between steel beam and column at elevated temperatures. The numerical procedure described is based on the model proposed by Huang (2011), incorporating additional developments to more precisely determinate the tension, compression and bending moment capacities of end-plate connection in fire. The proper failure criteria are proposed to calculate the tension capacity for each individual bolt row. In this new model the connection failure due to bending, axial tension, compression and shear are considered. The influence of the axial force of the connected beam on the connection is also taken into account. This new model has the advantages of both the simple and component-based models. In order to validate the model a total of 22 tests are used. It is evident that this new connection model has ability to accurately predict the behaviour of the end-plate connection at elevated temperatures, and can be used to represent the end-plate connections in supporting performance-based fire resistance design of steel-framed composite buildings.