• Title/Summary/Keyword: Fire and evacuation simulation

Search Result 211, Processing Time 0.019 seconds

A Study on the Improvement of Survival Rate of the Passengers and Crews according to FDS Analysis (FDS 분석을 통한 승객 및 선원 생존율 향상에 대한 연구)

  • Kim, Won Ouk;Kim, Jong Su;Park, Woe Chul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.312-317
    • /
    • 2015
  • Seafarers can confront to evacuate from the ship with many reasons such as collision, grounding and fire accident. It believes that evacuation time from ship is very important element in order to increase survival rate in the contingency circumstance, however narrow and complex structure of ship is one of obstacle element against prompt evacuation. Taking into consideration the unique structure of ship compared to the structure of other facilities, speed of fire propagation on board ship is faster than the same size of other type facilities. Therefore, measures to prompt evacuation are required. But it comes with the behavioral constraints of the crews and passengers of the nature of operating in a complex structure with narrow vessels. Therefore, in this study, we propose a formula to be analyzed by theoretical approach and simulation methods to improve the survival rate for the crew and passenger of the ship through the ship's structural modification. We analyzed the temperature rise and visibility which are the most influential effects on the life safety in the event of fire by using a three-dimensional analysis of sight-only program Fire Dynamic Simulator (FDS) as analytical tools.

A Study on Egress Algorithm for High-rise Buildings Using Egress Simulation (피난시뮬레이션을 이용한 초고층건물의 피난 알고리즘 연구)

  • Kim, Won Kook;Seo, Dong Hyun
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.33-39
    • /
    • 2018
  • When the fire in the high-rise building was not extinguished in its early stage and propagated over its origin, safe egress becomes one of the most important factor to minimize the casualties. Recently fire protection for high-rise building has been reinforced after experiencing the series of disastrous fires. But, we still find many high-rise buildings do not comply with those reinforcement. And also there is a possibility of failure of reinforced fire protection system. Under these situation safe egress guide would be the final layer of protection. In this study existing egress methods were identified and evaluated. According the result of study, priority in egress should be given to the tenants on the floor of fire origin and floors exposed to the risk of fire. Then, the rest of the tenants can be evacuated simultaneously. Floors exposed in fire risk shall be determined by fire tests and/or fire simulations. But, the result of fire monitoring shall override preliminary estimations. Egress time for each algorithm was estimated by egress simulation and the result was compared. There was a little difference in egress time between total egress and phased egress, and a big difference between using stairs only and using elevators and stairs together. to a constant thickness between layers constituting a firefighter's protective clothing should be considered in the future.

CFD-based simulation of fire-induced smoke and carbon monoxide transportation in the single compartment (CFD를 이용한 단일 구획 공간에서의 연기와 CO 확산 시뮬레이션)

  • Son, Yoon-Suk;Kim, Hyeong-Gweon;Oh, Hyung-Sik;Kim, Tae-Ok;Shin, Dong-Il
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.290-293
    • /
    • 2008
  • In this study, the Computational Fluid Dynamics (CFD) has been used to analyze the smoke movement and the carbon monoxide concentration distribution, both vertically and longitudinally, in a compartment, based on conservation laws. The Fire Dynamics Simulator (FDS) developed by National Institute of Standards and Technology (NIST) was used for numerical simulations using Reynolds averaged Navier-Stokes equations (RANS) model to solve for time-averaged properties. Results show, as a function of time, a detailed distribution of temperature and carbon monoxide concentration changing against the height above the floor and those changes alongside the distance away from the fire source. Fire-induced smoke and toxic gases like CO are more dangerous in a confined space. The result of study may contribute in designing the smoke evacuation system based on the precise tenable condition.

  • PDF

Measurement and Analysis of Moving Velocity of Elementary School Students Under a Escape Drill (초등학생의 피난 훈련 상황하에서의 이동속도 측정 및 분석에 관한 연구)

  • 김응식;이정수;김수영
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.1-6
    • /
    • 2003
  • This study measures the various moving velocities of elementary school children under situation of fire drill and suggests the methods of analysis. The velocities are such as the exiting velocity at the door of the classroom, personal walking velocity at corridor, velocity according to density of crowd and personal walking velocity at stairway. For these measurement an elementary school in Daejeon is chosen and 15 girls and 15 boys are selected in each grade. Finally speed data of the children is obtained and we can apply this data for the evacuation simulation of a school.

A Optimization of Fire Safety Design in Multiplex Cinema Theater (국내 복합상영관 시설의 방재대책에 관한 연구)

  • 허준호;윤명오
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.43-50
    • /
    • 2002
  • 21C, Multiplex Cinema Theater is made from movie industry developed and become a place where we can spend our free time and consuming. But, theater users, who are many and unspecified persons, are short of information on the Multiplex Cinema Theater, so that they may be injured or killed at the occurrence of fire accident. Particularly, Multiplex Cinema Theater is a place that underground space or top floor in highrise building had many people in theaters. However, this problem is difficult to solve that to protect human being and properties at the occurrence of fire accident in the Multiplex Cinema Theater, In order to overcome such problems, Multiplex Cinema Theater need fire protection solutions facilities concerning particulars to pay attention to the safety on a fire and evacuation. This study analysed Multiplex Cinema Theater concept and computer simulation for risk point.

An Analysis of algorithm fire & evacuation simulation developed by TFD and all countries of the world of simulation. (동경소방청의 화재피난시뮬레이션과 각국의 시뮬레이션 특성 및 알고리즘 분석)

  • Kim, Dong-Eun;Lee, Hyun-Jin;Seo, Dong-Goo;Yi, Jae-Won;Kazunori, Harada;Hwang, Eun-Kyoung;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.3-8
    • /
    • 2009
  • 2009년 국내에서 실행되는 성능위주설계인(PBD)을 비롯하여 화재안정성평가를 시뮬레이션을 중심으로 사용하고 있는 추세이다. 그러나 현재 국내에서는 자체 시뮬레이션 프로그램의 이용빈도 보다 타국의 프로그램의 이용 빈도가 높은 추세이다. 현재 많이 이용되고 있는 영국의 SIMULEX와 EXODUS가 대표적인 프로그램이 되겠다. 일본의 동경소방청에서 개발된 화재피난 시뮬레이션(FEA)에서는 연기와 화재성상을 고려하여 피난과 연동하여 피난을 실시하고 있다. 따라서 본 논문에서는 FEA가 국내에 적용방안에 합당한지 파악하고자 SIMULEX와 EXODUS 비교를 실시하여 FEA의 개선점을 도출하였다.

  • PDF

A Study on the Fire Safety of High-rise Apartments Based on Fire Door Switch and Automatic Fire Extinguishing System

  • Zhang, ZeChen;Kong, Ha-Sung
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.424-430
    • /
    • 2021
  • The purpose of this study is to analyse the characteristics and spreading laws of parameters such as fire smoke, concentration of CO, visibility, and temperature at fire scene in high-rise residential buildings under the different conditions of fire doors and automatic fire extinguishing systems. Using Pyrosim to simulate diverse fire scenes in a high-rise apartment with corridors, to analyze the changes in those parameters. The results show that when a fire occurs, closing the fire-fighting corridor will increase the smoke temperature and concentration of CO in the stairwell, and reduce the height and visibility of the smoke layer; the automatic fire extinguishing system effectively suppresses the increase in the temperature of the fire smoke and the sedimentation of the smoke layer. Reasonable setting and operation of the automatic fire extinguishing system could effectively inhibit the spread of fire. Although closing fire corridor can slow down the direct upward spread of smoke through the corridor, it will force the fire smoke into the stairwell, which will seriously affect evacuation through the stairs. Therefore, in order to reduce risks, it is forbidden to close the fire doors of the firefighting corridor and stacking combustible materials in the corridor, Also, intensifying inspections and ensuring the normal operation of the automatic fire extinguishing system are indispensable. Based on the research results, the significance of installing fire-fighting facilities in the construction of high-rise apartments was discussed and proved.

Study of the Fire Risk of Occupants During Pilotis Space Fires (필로티 공간의 화재 시 재실자의 위험성에 관한 연구)

  • Choi, Seung-Bok;Choi, Doo-Chan;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.144-150
    • /
    • 2016
  • An apartment house with a pilotis that raises the architectural volume and provides a space for circulation is becoming popular. With the popularity of pilotis in apartment houses, people also have a keen interest in the potential fire risk at the pilotis. As residents can only access their apartment house through the pilotis, there is a risk to the occupants if there is fire there. Therefore, this study evaluated the pilotis fire cases of urban multifamily housing to conduct a Fire Dynamics Simulator (FDS) and Fire Evacuation Simulation (FES). Through these two simulation methods, it is possible to validate the riskiness of fire at an apartment with a pilotis. The study identified that the toxic gases and flame spread out to the pilotis within hundred seconds after ignition. In addition, the toxic gases and flame also reach the second floor within three seconds and the entire building within 735 seconds if the entrance doors at the pilotis are opened. On the other hand, the FES simulation results showed that it also takes about approximately 609 seconds to excavate from the apartment house with a pilotis. Therefore, this research shows that an apartment house with a pilotis can ensure the building occupants' lives and their safety if there is fire.

A Study on the Development of Performance Based Fire Risk Assesment Program (FDS를 활용한 성능위주 화재위험성평가 프로그램개발에 관한 연구)

  • Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.1-6
    • /
    • 2008
  • `SOS', Simulator Of Safety assessment for fire, was developed to simulate fire safety assessment for a structure which is geometrically complex. The program(SOS) is intended to use for searching as well as designing tools to analyse the evacuation safety through a wide range of structure conditions. The computer program has a function which importing FDS's calculating results to each individual resident in the structure. These attributes include a walking speed reduction by producing visibility reduction for each person on the fire. $A^*$ pathfinding algorithm is adopted to calculate the simulation of escape movement, overtaking, route deviation, and adjustments individual speeds in accordance with the proximity of crowd members. This SOS program contributes to a computer package that evaluates the fire safety assessment of individual occupants as they walk towards, and through the exits especially for building, underground spaces like a subway or tunnel.

A Prototype for Real-time Indoor Evacuation Simulation System using Indoor IR Sensor Information (적외선 센서정보기반 실시간 실내 대피시뮬레이션 시스템 프로토타입)

  • Nam, Hyun-Woo;Kwak, Su-Yeong;Jun, Chul-Min
    • Spatial Information Research
    • /
    • v.20 no.2
    • /
    • pp.155-164
    • /
    • 2012
  • Indoor fire simulators have been used to analyse building safety in the events of emergency evacuation. These applications are primarily focused on simulating evacuation behaviors for the purpose of checking building structural problems in normal time rather than in real time situations. Therefore, they have limitations in handling real-time evacuation events with the following reasons. First, the existing models mostly experiment the artificial situations using randomly generated evacuees while real world requires actual data. Second, they take too long time in operation to generate real time data. Third, they do not produce optimal results to be used in rescueing or evacuation guidance. In order to solve these limitations, we suggest a method to build an evacuation simulation system that can be used in real-world emergency situations. The system performs numerous simulations in advance according to varying distributions of occupants. Then the resulting data are stored in DBMS. The actual person data captured in infrared sensor network are compared with the simulation data in DBMS and the querried data most closely is provided to the user. The developed system is tested using a campus building and the suggested processes are illustrated.