• Title/Summary/Keyword: Fire Safety Design

Search Result 683, Processing Time 0.032 seconds

The Optimization of Passenger Seat Belt Design for Female Passenger (여성 승객을 고려한 동승자석 안전벨트의 설계 최적화)

  • Kim, Yun-Bae;Kim, Hyung-Jun;Han, Jae-Nyung;Kim, Hyung-Il;Chae, Soo-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.10-15
    • /
    • 2012
  • The design of automobile occupant seat belt system has been studied by using MADYMO. Based on the FMVSS 208 (Federal Motor Vehicle Safety Standards 208) and the USNCAP (United States New Car Assessment Program) regulations, seat belt design parameters were chosen for the design improvement to the 5th percentile female dummy: limit force of load limiter, time to fire of shoulder belt, inlet length of shoulder belt, inlet length of lap belt. The design of experiment method was employed to optimize the design parameters of passenger seat belt. Range of injury probability due to the change of H-point position was estimated by the simulation.

A Study on Smoke Extract Vents in a Subway with Screen door by Evacuation Performance Evaluation through RSET vs. ASET based on Computer Simulations (스크린도어가 설치된 지하철 승강장의 대피안전성 평가를 통한 제연환기구의 방재성능 개선방안 연구)

  • Park, Hyung-Joo;Lee, Young-Jae;Shin, Dong-Cheol;Baek, Dong-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.511-519
    • /
    • 2007
  • This study provides comprehensive design improvements covering technical issues concerning life safety matter In case of fire train stoppage in the middle of a tunnel. Recently Government announced that most of subway platforms will have screen doors in 3 years. Therefore, many fire safety engineers considered that they may contribute on life safety on train stoppage in tunnel. Especially The screen door can protect platform from smoke along tunnel ceiling when fire train stopped in tunnel. The study showed that platform ventilation ducts and the a tunnel ventilation chimney in the middle of tunnel in exiting subway tunnel could not guarantee life safety ability in terms of RSET vs. ASET comparison. Furthermore during evacuation process many peoples may be threatened from the smoke spread from the origin of fire. Although only additional vertical route can be installed in tunnels In order to decrease RSET, it will costs high or no spaces remains in outside on the road. The study suggested that increase of ASET can be best solution without additional escape route, therefore alternative design methods suggested on the base of simulation results. Finally the study shows alternative methods can give good result in terms of evacuation performance evaluation. The evacuation performance evaluation helps the decision-maker to determine the preferred alternatives or upgrades to existing tunnel infrastructure and other measure to meet safety objectives. Finally, the study details the effectiveness of measures the can be taken to reduce the risk of incidents in subway tunnels.

A Study on the Impacting Factors Influencing on the Volunteer Firefighter's Satisfaction in Sejong City Upon their Activities as a Volunteer Firefighter (세종특별자치시 의용소방대원의 활동 만족도에 미치는 영향 요인 연구)

  • Kim, Seon Woong;Lee, Wonjoo;Lee, Chang-Seop
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.96-103
    • /
    • 2016
  • The purpose of this paper is to study effects of participation motivations, relationships, and compensation on a satisfaction in activity of volunteer firefighter. For this purpose, we surveyed 106 volunteer firefighter worked in Sejong city. The survey data was analyzed the reliability in questionnaire design by SPSS 20.0 win program. Also, the interrelationship of each factors were confirmed by analysis of frequency, percentage and regression analysis. Furthermore, the regression analysis was performed in order to investigate effects of motivations, interpersonal relationships, and compensation on a satisfaction in activity of volunteer firefighter. A factor of motivations, interpersonal relationships, and compensation was found to be a positive influence on a satisfaction in activity of volunteer firefighter under significance probability of < 0.05. The overall satisfaction was influenced in order of motivations, compensation, interpersonal relationships. This paper is expected to serve as a basis for the efficient operation of the Korean Volunteer Fire Department.

A Study on the Unbalanced Current Distribution of HTS Power Cable (초전도 전력케이블의 전류 불평형에 관한 연구)

  • Kim, Jae-Ho;Park, Chung-Hwa
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.43-47
    • /
    • 2012
  • The unbalance currents flow the High Temperature Superconducting (HTS) power cable caused by asymmetrical fault, harmonic distortion and unbalanced load. That problem causes additional loss and leakage field in the HTS power cable, and deteriorates the electric power quality and stability. In addition, large amounts of unbalanced current can cause negative sequence and ground relays to operate. This paper presents an analysis unbalanced three-phase current distribution in HTS power cable caused by unbalanced load condition and grounding methods using PSCAD/EMTDC. The results obtained through the analysis would provide important data for the design of HTS power cables and valid information for their installation in power system.

Uniform Hazard Spectrum for Seismic Design of Fire Protection Facilities (소방시설의 내진설계를 위한 등재해도 스펙트럼)

  • Kim, Jun-Kyoung;Jeong, Keesin
    • Fire Science and Engineering
    • /
    • v.31 no.1
    • /
    • pp.26-35
    • /
    • 2017
  • Since the Northridge earthquake (1994) and Kobe earthquake (1995), the concept of performance-based design has been actively introduced to design major structures and buildings. Recently, the seismic design code was established for fire protection facilities. Therefore, the important fire protection facilities should be designed and constructed according to the seismic design code. Accordingly, uniform hazard spectra (UHS), with annual exceedance probabilities, corresponding to the performance level, such as operational, immediate occupancy, life safety, and collapse prevention, are required for performance-based design. Using the method of probabilistic seismic hazard analysis (PSHA), the uniform hazard spectra for 5 major cities in Korea with a recurrence period of 500, 1,000, and 2,500 years corresponding to frequencies of (0.5, 1.0, 2.0, 5.0, 10.0)Hz and PGA, were analyzed. The expert panel was comprised of 10 members in seismology and tectonics. The ground motion prediction equations and several seismo tectonic models suggested by 10 expert panel members in seismology and tectonics were used as the input data for uniform hazard spectrum analysis. According to sensitivity analysis, the parameter of spectral ground motion prediction equations has a greater impact on the seismic hazard than seismotectonic models. The resulting uniform hazard spectra showed maximum values of the seismic hazard at a frequency of 10Hz and also showed the shape characteristics, which are similar to previous studies and related technical guides for nuclear facilities.

Fire Simulation for Vent Flow and Temperature in Engine Room of Small Ship: Effects of Ceiling Duct Location and Side Vent Size (소형선박 기관실의 개구부 유동 및 온도에 대한 화재시뮬레이션: 천장 통풍통 위치 및 측면 개구부 크기 영향)

  • Jeong, Lee-Gyu;Lee, Chi Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.454-465
    • /
    • 2020
  • Fire simulations were performed using the Fire Dynamics Simulator (FDS) software to examine the vent flow and temperature in the engine room of a small ship. A diesel fire with a heat release rate of 10 kW was targeted, and the effects of the ceiling duct location, side vent existence and nonexistence, and side vent size were investigated. The existence or nonexistence of the side vent and its size considerably affected the smoke behavior, mass flow rate through the vent, and temperature. When the side vent was not installed or was small, the smoke layer reached the floor in the engine room. In addition, as the side vent size increased, the mass flow rate through the vent increased with decreasing temperature value. However, the effects of the ceiling duct location on the smoke behavior, mass flow rate through the vent, and temperature seemed to be relatively minor compared to those of the side vent size. Therefore, to improve the fire safety of the engine room in a small ship, the side vent size is considered to be a more important design factor than the ceiling duct location.

A Commodity Classification Method of Domestic Rack-Type Warehouse for Sprinkler System Design (스프링클러 설계를 위한 국내 적층형 물류창고의 수용물품 등급분류 방법)

  • Yang, So-Jin;Lee, Young-Jae;Kim, Woon-Hyung;Dewey, James M.;Ham, Eun-Gu
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.531-539
    • /
    • 2019
  • Purpose: The purpose of this study is to present the commodity classification method of domestic rack-type warehouse for sprinkler system design. Method: On-site surveys and classification criteria of the NFPA, FMDS, EN and Japan were analysed and ISO 12949 test were carried out with proposed each classification commodity. Result: Based on a heat of combustion, a classification method for extra high, high, medium and low are proposed. Conclusion: Sprinkler design criteria to secure the maximum extinguishing strength for each class of commodity need to be applied.

A Study on the Safety Improvement at the Flare System in the Chemical Process (화학공정에서의 플래어 시스템 안전성 향상 방안)

  • Ma, Byung-Chol;Kwon, Hyuck-Myun;Kim, Young-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.55-63
    • /
    • 2012
  • The purpose of this study is to suggest new safety code to improve the safety of the flare safety system. Firstly, we analyzed the major accidents occurred at the flare system since 1996 and proposed 3 articles which is required to be added newly to the existing KOSHA code. Secondly, we also performed the HAZOP study for each study node and also suggested 5 articles. Finally, we analyzed the commented contents of PSM reports which have been submitted from the enterprise located in Honam province since 2005 and proposed 5 articles as well. We understand that all 13 articles proposed above, should be added to the KOSHA code in order to improve the safety in the flare system and to prevent the major fire and explosion accidents in the design stage.

Predicting the bond between concrete and reinforcing steel at elevated temperatures

  • Aslani, Farhad;Samali, Bijan
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.643-660
    • /
    • 2013
  • Reinforced concrete structures are vulnerable to high temperature conditions such as those during a fire. At elevated temperatures, the mechanical properties of concrete and reinforcing steel as well as the bond between steel rebar and concrete may significantly deteriorate. The changes in the bonding behavior may influence the flexibility or the moment capacity of the reinforced concrete structures. The bond strength degradation is required for structural design of fire safety and structural repair after fire. However, the investigation of bonding between rebar and concrete at elevated temperatures is quite difficult in practice. In this study, bond constitutive relationships are developed for normal and high-strength concrete (NSC and HSC) subjected to fire, with the intention of providing efficient modeling and to specify the fire-performance criteria for concrete structures exposed to fire. They are developed for the following purposes at high temperatures: normal and high compressive strength with different type of aggregates, bond strength with different types of embedment length and cooling regimes, bond strength versus to compressive strength with different types of embedment length, and bond stress-slip curve. The proposed relationships at elevated temperature are compared with experimental results.

Efficiency Estimation of Toxicity Free Eire Resistance Cable

  • Yoon, Hun-Ju;Hon, Jin-Woong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.34-38
    • /
    • 2002
  • In this paper, efficiency estimation of toxicity fee fire resistance cable experiments was measured smoke density of toxicity free fire resistance polyolefin insulation material and electric field dependence of tree shape in low density polyethylene (LDPE). One of the most serious causes of failure in high-voltage cables, can be an electrical discharge across an internal gab or void in the insulating material. Treeing due to partial discharge is one of the main causes of breakdown in the insulating materials and reduction of the insulation life. Therefore the necessity for establishing a method to diagnose the aging of insulation materials and to predict the breakdown of insulation and research of the fire resistance character has become important. First, we have studied on electric field dependence of tree shape in LDPE about treeing phenomena occurring on the high electrical field. Second, the measurement method is the attenuation quantity of irradiation by smoke accumulating with in a closed chamber due to non-flaming heat decomposition and flaming combustion. A main cause of fire-growth and generating toxic gas when, it bums, should be dealt with great care in life. safety design. The fire gases were occurred carbon monoxide and decomposition than in polyolefin due to incomplete combustion of PVC, which has high content of carbon in chemical compound.