• Title/Summary/Keyword: Fire Hazard

Search Result 553, Processing Time 0.03 seconds

Study on The Heat Transfer and Mechanical Modeling of Fiber-Mixed High Strength Concrete (섬유혼입 고강도 콘크리트의 열전달 및 역학적 거동 해석모델에 대한 연구)

  • Shin, Young-Sub;Han, Tong-Seok;Youm, Kwang-Soo;Jeon, Hyun-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.45-52
    • /
    • 2011
  • To improve fire-resistance of a high strength concrete against spalling under elevated temperature, fibers can be mixed to provide flow paths of evaporated water to the surface of concrete when heated. In this study, the experiment of a column under fire and mechanical loads is conducted and the material model for predicting temperature of reinforcement steel bar and mechanical behavior of fiber-mixed high strength concrete is suggested. The material model in previous studies is modified by incorporating physical behavior of internal concrete and thermal characteristics of concrete at the elevated temperature. Thermo-mechanical analysis of the fiber-mixed high strength concrete column is conducted using the calibrated material model. The performance of the proposed material model is confirmed by comparing thermo-mechanical analysis results with the experiment of a column under fire and mechanical loads.

Analysis of the Relationship between Landform and Forest Fire Severity (지형과 산불피해도와의 관계 분석)

  • Lee, Byung-Doo;Won, Myoung-Soo;Jang, Kwang-Min;Lee, Myung-Bo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.58-67
    • /
    • 2008
  • Topography factors, as homeostasis variables at forest fire, affect the formation of fuel load patterns, atmospheric phenomena and forest fire behavior. Examination of the correlation between landforms and fire severity is important to decision making for fire hazard analysis and fighting strategies. In this study, fire severity was analyzed using Normalized Burn Ratio(NBR) derived from pre- and post-fire Landsat TM/+ETM images and landform were classified based on Topographic Position Index(TPI) in Samcheok(2000), Cheongyang(2002), and Yangyang(2005) forest fire regions. F-tests and Duncan's multi-range test between landform and fire severity showed that fire severities of headwater, high ridges, and upper slopes is higher than ones of local ridges, midslope ridges, and plains. Fire severity were more sensitive in coniferous forest than broadleaf forests.

  • PDF

Analysis on a Location Compatibility of Forest Fire Detection Facilities according to Classification of Forest Fire Hazard Regions Types in Samcheok Area (삼척지역 산불위험지 구분에 따른 감시시설의 위치 적합성에 관한 연구)

  • Lee, Si-Young;An, Sang-Hyun
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.265-271
    • /
    • 2008
  • This study analyzed on the area of Samcheok, Kangwondo about forest fire alarming area and enlargement of the area. Then, visible area by unattended watching camera and watchtower for forest fire which were run by Samcheok was cross-checked with geographic information system, and it ould be whether effective on watching the area here the forest fire risk was high enough and also it could be expanded to larger forest fire. The result of study, the visible area by watching facilities only holds for 13.4% of the whole forest fire alarming area, but the forest fire can be observed even though it is occurred in small valley because of smoke and all the forest fire have been occurred in daytime. Therefore, it can be determined that watching area will be extended around 50.3% while the observation radii of watching facilities raise by 4km. However, Samcheok has much greater area of mountain area in compared to any other cities or counties, watching facilities should be installed and run additionally for extinguishing the forest fire from the beginning.

Introduction of Fire Protection Technology and Its Design Method of Offshore Facilities (해양플랜트의 방화대책 및 설계기술 소개)

  • Koo, Myeong Jun;Choi, Jae Woong;Yoon, Ho Byung
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • The dimensioning accidental loads have been selected through suitable quantitative risk assessment and generally utilized important factors for offshore facility design. The fire hazard can be quantified with dimensioning fire loads. The main purposes of fire protection are to maintain the functionality of safety systems within evacuation period and to prevent the escalation from initial fire to uncontrolled catastrophic fire. This paper introduces the applications and the design methods of active and passive fire protections as representative measures of fire protection of offshore facilities. The passive fire protection requires the high initial installation cost and much difficulty on the operation of facilities and their maintenance. The oil major clients have asked the design contractors of offshore facilities to optimize the amount of passive fire protection with relevant engineering technology recently.

A Study on Fire Hazard Analysis and Smoke Flowing for the Semiconductor Manufacturing Process (반도체 제조공정의 연기유동에 관한 연구)

  • Han, Soo-Jin;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.1
    • /
    • pp.197-211
    • /
    • 2007
  • The power of semiconductor, Korea is continuously constructing semiconductor production line for keeping a front-runner status. however, studies and data about potential risks in semiconductor factory are still short. If fire does not initially suppressed, the fire causes a great damage. To decrease fire risk factors, in addition to fire fighting safety equipment, more important thing is how to design and construct fire protection system. The current fire protection codes about semiconductor factory come under functional law, and this law is short of consideration about particularity of factory. The existing prescriptive fire codes depending on experience compose without evident engineering verifications, thus equipments which is created by the current prescriptive fire code may bring about a variety of problems. For example, the design under the current regulation can not cope with the excessive investments, low efficiencies, and the diversifying construction designs and be applied to the quick changes of new technologies. Ergo, an optimal design for fire protection is to equip fire protection arrangements with condition and environment of production field. Manufacturing factory of semiconductors is a windowless airtight space. And for cleanliness, there exists strong flow of cooperation. Therefore, there is a need for fire safety design that meets the characteristic of a clean room. Accordingly, we are to derive smoke flow according to cooperation process within a clean room and construction plan of an optimal sensor system. In this study, in order to confirm the performance of proposed smoke-exhaust equipment and suggest efficient smoke exhaust device when there is a fire of 1MW of methane in the clean room of company H, we have implemented fire simulation using fluid dynamics computation.

A Study on a PCB Manufacturing Plant's Fire Risk Assessment due to the Mitigation of Fire Protection Zone and an Improvement Way through Estimation of Sprinkler Demand Water Flow Rate (방화구획 완화에 따른 PCB공장의 화재위험평가 및 스프링클러 요구살수유량 산정을 통한 기준개선안에 관한 연구)

  • Oh, Chan-Wook;Oh, Ryun-Seok;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.56-62
    • /
    • 2019
  • A sprinkler is a fire extinguishing equipment installed in a protected area where a detector or head detects a fire and automatically puts out the fire. However, the Ministry of Land, Infrastructure and Transport's "Regulations on Building Evacuation and Fire Protection Standards, etc." stipulate that fire compartment area should be reduced to three times by installing sprinkler facilities in the case of factories and warehouses. In this study, fire hazard was analyzed for a real PCB factory which mitigated the fire protection zone by sprinkler installation, and the head opening characteristics of sprinkler facilities through computer simulation, installation standards of sprinkler facilities, thermal performance, operating range, and the amount of water sprayed to identify the problems of operation of sprinkler facilities in case of fire, and to suggest the grounds such as required sprinkling flow rate for system improvement.

Measures for Preventing Pressure Fracture of Fire and Flue Tube Boiler (노통연관식 보일러의 압궤사고 방지대책)

  • Lee Keun-Oh
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.14-19
    • /
    • 2004
  • Boiler is a hazardous equipment to have potential explosion ail the time. And not only it has malfunction at explosion. it lead to people death but also secondary accident such as explosion and fire. Therefore, this equipment should not be broken for keeping its own function. And also, high level of safety should be kept in the process of the use not to be malfunctioned. A large scale of accident due to boiler explosion can be preventive in advance. Boiler fracture is occurred by instant expansion (approximately 1700 time) from quick evaporation of rater in boiler, due to pressure decrease in boiler Emitting energy from it is tremendous and it is so dangerous because of its high temperature. Secondary explosion such as fire is also a main hazard occurring at fuel supply place. If any devices with high pressure is broken, then not only boiler vessel but also components of it are spread with high speed, causing secondary accident. This study is to analyze integrally accident cause of fire and flue tube boiler to have occurred pressure fracture actually, to show countermeasures to prevent accident loss from the fire and flue tube boiler.

An Improvement Study on National Fire Safety Code of Sprinkler System for Hydraulic Calculation Application (수리계산 적용을 위한 스프링클러설비의 화재안전기준 개선방안 연구)

  • Lee, Keun-Oh;Kang, Joo-Hyeong
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.1 s.79
    • /
    • pp.7-12
    • /
    • 2007
  • There are two kinds of design process for sprinkler system. one is pipe schedule system and the other is hydraulically designed system. We have inefficient results when we design by hydraulically designed system because the design process for sprinkler system is restricted by domestic fire code. Therefore, it is essential to do an introduction of hydraulically designed system which is based on engineering for enhancing reliability and efficiency of sprinkler system. This study presents points at issue by comparing and studying design standards of sprinkler system from Korea, Japan and NFPA, and presents improvement plans of national fire safety code of sprinkler system by processing, comparing and analyzing designs according to piping schedule and hydraulically designed system about domestic objects. Installation standards of sprinkler system have to be applied not by object buildings but by hazard classification. It is hard to design an efficient sprinkler system for fire control when water supply requirement of sprinkler systems allocated according to a size of a building because the same purpose but other buildings may request more water requirement or less. We should sublate the pipe schedule system from national fire safety code and need to introduce the hydraulically designed system. The pipe schedule system presents easy access because it is based on the forecasted engineering calculations but it is applied to only small buildings like NFPA due to its low reliability.

Electrical fire simulation in control room of an AGN reactor

  • Jyung, Jae-Min;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.466-473
    • /
    • 2021
  • Fire protection is one of important issues to ensure safety and reduce risks of nuclear power plants (NPPs). While robust programs to shut down commercial reactors in any fires have been successfully maintained, the concept and associated regulatory requirements are constantly changing or strengthening by lessons learned from operating experiences and information all over the world. As part of this context, it is necessary not only to establish specific fire hazard assessment methods reflecting the characteristics of research reactors and educational reactors but also to make decisions based on advancement encompassing numerical analyses and experiments. The objectives of this study are to address fire simulation in the control room of an educational reactor and to discuss integrity of digital console in charge of main operation as well as analysis results through comparison. Three electrical fire scenarios were postulated and twenty-four thermal analyses were carried out taking into account two turbulence models, two cable materials and two ventilation conditions. Twelve supplementary thermal analyses and six subsequent structural analyses were also conducted for further examination on the temperature and heat flux of cable and von Mises stress of digital console, respectively. As consequences, effects of each parameter were quantified in detail and future applicability was briefly discussed. On the whole, higher profiles were obtained when Deardorff turbulence model was employed or polyvinyl chloride material and larger ventilation condition were considered. All the maximum values considered in this study met the allowable criteria so that safety action seems available by sustained integrity of the cable linked to digital console within operators' reaction time of 300 s.

Analysis of Spatial Characteristics of Old Building Districts in Daegu to Evaluate Fire Risk Factors (화재위험요소의 도출을 위한 대구지역 노후건축지구의 공간특성분석)

  • Son, Byeung-Hun;Kang, Kyung-Ha;Ryu, Jung-Rim;Roh, Seung-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.202-203
    • /
    • 2021
  • The proportion of old buildings over 30 years old increased from 29.0% in 2005 to 37.8% in 2019. These old buildings were created during the absence of building-related safety standards such as fire safety performance. In the process of use, illegal changes and extensions were made, making them more vulnerable to safety. In the 1st Basic Plan for Fire Safety Policy, among the 12-Key Tasks, one is to ensure the safety of residential living spaces. Fire safety investigations are being conducted to prevent large-scale disasters such as multi-use buildings, but no investigation has been conducted at the regional district level where small-scale old buildings are concentrated. Therefore, in order to derive fire risk factors in the old building district where old buildings are concentrated, the composition characteristics of the buildings were first analyzed.

  • PDF