• Title/Summary/Keyword: Fire Cause

Search Result 825, Processing Time 0.029 seconds

Fire & Life Safety Challenges in Sustainable Tall Building Design

  • Li, Fang;Reiss, Martin
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • The movement towards sustainable building design can result in unique fire protection challenges and concerns, especially with super tall buildings in relationship to traditional prescriptive code compliance. Different countries haves different code requirements as well as local best practices and may cause conflict with the design features when designing green buildings. These include, but not limited to green roofs, sprinkler water quality and testing, fire department access and areas of refuge with direct or indirect impact by the perspective code compliance. The solutions to these prescriptive code challenges and fire safety concerns can range from simple alternatives to more detailed engineering performance-based design analyses with good solid practice.

A Study on Fire Prevention Requirements and Tests for Small Aircraft (소형항공기의 화재방지 요건 및 시험에 관한 연구)

  • Yoo, Seung-Woo;Jin, Young-Kwon
    • Journal of Aerospace System Engineering
    • /
    • v.5 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • The goal of fire prevention research is to eliminate fires as a cause of fatal accidents and there are two main areas of research. One is to prevent flame propagation during in-flight and it addresses fire hazards. The other is to minimize the possibility of flame penetration or fuselage burn-through and it aims toward post-crash survival include crash protection, emergency evacuation and post-evacuation survival. Civil aviation authorities world-wide are trying to identify threats and measure performance for fire prevention. The results of research are standardized and given as general directions of test methods. This paper has prepared to study and present the means of compliance to the fire prevention requirements and applicable test methods.

A Study of Computational Fluid Dynamics Analysis for the Water Spray Distance of Long Jet Monitor (Long Jet Monitor의 소화수 분사 거리에 대한 유동 해석적 연구)

  • Jae-Sang Jo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.907-913
    • /
    • 2023
  • Currently, the sprinkler method is widely used as an initial suppression method in existing firefighting systems. However, this method can cause significant damage to both equipment and facilities in the hydration area. To minimize this damage, fire extinguishing monitors are being developed that can spray fire extinguishing water directly at the point of fire. These monitors are installed on the top floor of the ship, such as the Living Quarter and Ventilation System. While conventional fire extinguishing monitors focus on lightweight research with a short spray port and require a spray distance of about 40 to 45m, recent developments necessitate a longer spray port, similar to a water cannon, requiring a spray distance of about 70 to 75m. This study aims to predict the injection distance of both the existing ship-installed fire extinguisher and the long spray port fire extinguisher through hydrodynamic computer analysis, and to determine whether the injection distance has increased.

Wireless Digital Packet Communication and Analog Image Communication Systems for Fire Fighting Robot (소방로봇 원격제어를 위한 무선패킷 디지털 데이터통신 및 아날로그 영상통신 기법)

  • Jung, Jik-Han;Kim, Byung-Wook;Park, Sang-Uk;Park, Dong-Jo;Park, Jung-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.121-127
    • /
    • 2007
  • Frequent occurrences of a fire cause tremendous loss of human lives and their property. Recently, in order to cope with such catastrophic accidents, researches on fire-fighting robots are carried out in developed countries. Under the dangerous situations, it is sometimes impossible for fire-fighting men to access the firing place because of explosive materials, smoke, high temperature and so on. In such an environment, fire-fighting robots can be useful to extinguish the fire. It is usually very dangerous place where fire-fighting robots operate. Hence, these robots should be controlled by remote users who are for away from the firing place exploiting remote communication systems. This paper considers the communication systems between fire-fighting robots and remote users. The communication systems consist of two parts; digital packet communication systems and analog image communication systems. Digital packet communication systems transfer data packets in order to control fire-fighting robots and to check the state of the fire-fighting robots. Remote users watch the video around the fire-fighting robots by exploiting the analog image communication systems. In the future, the more prosperous the commercial communication network systems will be, the more evolved the communication systems for fire-fighting robots are.

Fire Patterns Based on the Hb-CO Concentration (헤모글로빈-일산화탄소 농도에 따른 연소형태)

  • Choi, Seung-Bok;Oh, Bu-Yeol;Choi, Don-Mook
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.373-377
    • /
    • 2011
  • Fire patterns have been used to determine the origin and cause of fires in every setting imaginable. However, it is very difficult to identify fire patterns from the fire-damaged remains of a devastated structure. If someone was killed by the fire, it is possible to identify fire patterns by analyzing the concentration of carbon monoxide-hemoglobin in the body of deceased as well as the pace of the fire. For example, a low level of carbon monoxide-hemoglobin in the body of the dead indicates a rapid fire with accelerants and the death was caused by severe heat and thick toxic fumes. However, a high level of carbon monoxide-hemoglobin in the body of the dead demonstrates that the fire was slow and/or there was a flameless form of combustion. Thus, this study identifies fire patterns through analyzing the level of carbon monoxide-hemoglobin concentration on the dead from the fire.

  • PDF

Study on Fire Simulation in College Dormitories Based on Pyrosim

  • Zechen Zhang;Hasung Kong
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.321-327
    • /
    • 2024
  • In recent years, the frequency of fires in college dormitories has been increasing, primarily due to outdated electrical wiring and improper use of electrical appliances. Given the high population density in such buildings, fires can cause significant damage to life and property. To better understand the dynamics of dormitory fires, this study uses Pyrosim fire simulation software to model fire scenarios in a six-story male dormitory. The study focuses on analyzing key factors such as heat release rates, smoke spread, temperature changes, and carbon monoxide concentrations during a fire. Simulation results indicate that smoke spreads rapidly after a fire breaks out, significantly reducing visibility and hindering evacuation efforts. Simultaneously, temperatures near the fire source rise quickly, exceeding safe levels, and carbon monoxide concentrations reach dangerous thresholds in a short time, greatly increasing the risk of poisoning. Based on these findings, the study proposes several recommendations to improve fire prevention in dormitories, including installing smoke barriers, improving evacuation routes, adding mechanical smoke extraction systems, and enhancing students' fire safety awareness and skills through regular training. These measures are crucial for reducing fire risks and enhancing fire safety in college dormitories.

Gas Fire Accident Cause Survey Study (가스화재사고 원인조사 연구(LP가스를 중심으로))

  • Kim, Young-Cheol;Cha, Jong-Ho
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • The purpose of this paper is to report gas fire accident based on classification of the major gas fire causes (including handling mistakes, inferior goods, etc.), fire classifications (fire, explosion, leakages, etc.), damage levels(1st, 2nd, 3rd, 4th grade levels), casualties (death, serious wound, slight injury) since gas fire has been generated according to growth of gaseous fuel consumption on home and enterprises with various accident causes. Among gaseous fuels, LPG facility can be c1assified as gas container, pressure regulator, gas hose, interim valve, combustion port. Any fire or any explosion can be caused from handling mistakes, inferior goods on each parts as stated above. Exact gas fire causes shall be identified based on previous case studies on similar fires with consideration of lesson learns.

  • PDF

Fire at an Indoor Shooting Range in Busan I. Fire Reconstruction (부산 실내사격장 화재 I. 화재재현)

  • Park, Woe-Chul
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.114-119
    • /
    • 2010
  • The fire at a Busan indoor shooting range on November 14, 2009 was reconstructed by using a computational fluid dynamics model for fire simulations, in order to investigate the cause of the heavy death toll in a short period of time. Spread of the flame and smoke, and temperature distribution obtained by fire simulation were compared with the results of fire investigation based on the CCTV recordings. The flame and smoke flew out violently through the door into the cafeteria from the shooting range, and the cafeteria was filled with smoke just within 3 seconds followed by the onset of fire. This is consistent with the CCTV recordings. It was confirmed, as a result, that people in the cafeteria did not have enough evacuation time. The computed temperature at the door knob reached about $1400^{\circ}C$, near its melting point.

Study of Fire Examples for Electrical Wire Short and Insulated Coating Melting by Heating Including Automotive Engine Room (자동차 엔진룸 관련 전기 배선의 단락 및 열에 의한 절연피복 용융에 대한 화재사례 연구)

  • Lee, Il Kwon;Kim, Young Gyu;Youm, Kwang Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.15-19
    • /
    • 2013
  • This paper is to analyze and study the cause of fire examples produced because of short phenomenon by electric connecting damage and contacting engine over-heating with combustible materials in engine room of vehicle. In the first example, it knew the fact that the fire produced by contacting with body of vehicle because of loosed of bracket bolt for wire fixing that installed on the transmission case the battery power cable supply the power from battery of engine room to starting motor. In the second example, it certified the fire by short phenomenon because of insulation tape melting wound wiring lined from battery to starting motor. In the third example, it sought for fire's cause that melting phenomenon the wire coating by overheated engine as the wire disconnected with connector by the vibration. Therefore, the fire of system including engine electric made in the danger the people in the car by failure of engine and other system. And than, the car's driver must manage and examine a vehicle conscientiously.

Analysis on the Actual Conditions of Deaths due to Fires based on Annual Report on the cause of Death Statistics in Korea (사망원인통계연보에 기초한 화재로 인한 사망자발생 실태 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.20 no.1 s.61
    • /
    • pp.98-103
    • /
    • 2006
  • This paper analyzed deaths caused by fires using the Annual Report on the Cause of Death Statistics (based on vital registration) published by the Korea National Statistical Office. The number of fire deaths and the fire death rates of all deaths have started to decrease since the height in 1993. The younger groups have increasingly more fire deaths than the older groups. While children groups(age 10 and under) have decreased in their deaths caused by fires, the older groups (65 and over) tend to increase. Males are more likely to have a risk than females in all age groups. Fire death rates per 100,000 populations by age group suggest very high rates in the older groups. Although there are few changes in death rates caused by fires of all deaths, young children (age 4 and under) and older adults (age 75 and over) have a higher risk than any other age groups.