• Title/Summary/Keyword: Fire Area

Search Result 1,240, Processing Time 0.022 seconds

A Study on the Analysis of Simulation for Fire Safety Diagnosis in Wooden Building Congested Area (목조건물 밀집 지역의 화재위험성 평가를 위한 시뮬레이션 해석에 관한 연구)

  • Koo, In-Hyuk;Kim, Bong-Chan;Seo, Dong-Goo;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.87-88
    • /
    • 2013
  • Korea rapidly arranged urbanization and overpopulation with high growth of economy and all kinds of decrepit facilities are scattered all over the downtown. If there is a strong wind in fire, fire is rapidly increased by various fire spread factors. And Korea cannot build prediction model of urban fire combustion phenomena because there is no studies that physically explains the suitable flame phenomena for its real state. In this study, based on the Japanese Urban fire simulation to target the wooden building congested Area and suitability of fire risk assessment were reviewed.

  • PDF

Fire Extinguishing Capability of an Automatic Spreading Fire Extinguisher in Accordance with Horizontal Distance from a Fire Source (자동확산소화장치의 이격거리에 따른 소화성능평가연구)

  • Kwark, Ji-Hyun;Kim, Dong-Suk;Ku, Jae-Hyun
    • Fire Science and Engineering
    • /
    • v.27 no.5
    • /
    • pp.38-43
    • /
    • 2013
  • An automatic spreading fire extinguisher usually installed in a closed area like a boiler room, a laundry store or a restaurant's kitchen room is one of the fire protection equipments. This extinguisher automatically discharges dry powder, extinguishing fire. As this extinguisher has the extinguishing capability applicable to the nominal protection area, objects outside the area cannot be properly extinguished. However only its number is being requested according to the floor area in the related laws, and the extinguishing capability depends on the distance from a fire source. In this study we tried to investigate the extinguishing capability of the automatic spreading fire extinguisher in accordance with horizontal separation distance from a fire source. It appeared that the maximum horizontal separation distance was about 30 cm for both class A and B fire to be certainly extinguished.

A Study on the Improvement Method of Forest Fire Caused by Waste Incineration at the Farming Residential Area (농촌 주거지역 쓰레기소각으로 인한 산불화재 개선방안에 관한 연구)

  • Lee, Young-Sam
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.3
    • /
    • pp.9-15
    • /
    • 2016
  • Currently the forest area is 6,370,000 hectare (ha) which occupies 63.7% in Korea. The forest has good functions such as production of forest products, conservation of national land, prevention of disasters, etc. However constructing houses near the forest area make bad situation like illegal waste incineration by resident. So research subject is forest fire caused by waste incineration place including facility. And this study was conducted about statistical analysis and research analysis of the 100 waste incineration places including facilities at the country town. Statistical analysis shows that March is 27% which percentage is the highest number of forest fire in 10 years' average. The number of forest fire caused by waste incineration is 45 which is the third highest number in the fire statistic. The distance between waste incineration place including facility and forest area is 30m, 40m and 50m. That 40m (36%) is the most common distance from forest area. The types of waste incineration are ground (62%), the temporary facility made with oil drum can (35%) and other made with steel sheet, concrete, etc. The result of this study is that government and local government must conduct the improvement measure to reduce illegal incineration such as waste pickup area made with rain and wind proof type installed near residence, expenses for waste treatment, enlightenment and training, etc. Also considering their age and income are needed for realistic improvement.

An Analysis of Fire Area in Jinju City Based on Fire Mobilization Time (화재 출동시간에 근거한 진주시 소방권역 분석)

  • Koo, Seul;Yoo, Hwan Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.4
    • /
    • pp.127-134
    • /
    • 2012
  • This study analyzed the present status of services by fire-suppression mobilization time of fire station where is located in Jinju city, by using network analysis of GIS targeting fire station(five 119 safety centers, one 119 division) in Jinju city area. As a result, it was indicated to be 15.9% in the ratio with less than 5 minutes of mobilization time, 34.7% in the ratio with less than 8 minutes, 94% in the ratio with less than 20 minutes out of the whole fire service area in Jinju city. Even districts with more than 20 minutes were analyzed to reach 6%. Especially, to solve vulnerability to approach the fire service in uptown districts(Jinseong, Jisu, Sabong, Ilbanseong, the whole area of Ibanseong), the 119 division is installed more to be operated. However, accessibility is still remaining in low level. Also, in case of 119 safety center of Cheonjeon, the national industrial complex and the general industrial complex are being formed on a large scale. However, analyzing the fire service level in the corresponding area, the districts with more than 8 minutes and less than 20 minutes were existing broadly. In consequence of analyzing the fire service area in Jinju city with the fire-suppression mobilization time as the above, the fire service level is failing to escape largely from the status prior to the urban-rural consolidation compared to what the jurisdictional area was largely expanded by which the administrative districts were integrated by the urban-rural consolidation in locally small-and medium-sized city. Thus, there is a need of a measure for improving this.

Prediction of Forest Fire Hazardous Area Using Predictive Spatial Data Mining (예측적 공간 데이터 마이닝을 이용한 산불위험지역 예측)

  • Han, Jong-Gyu;Yeon, Yeon-Kwang;Chi, Kwang-Hoon;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.6
    • /
    • pp.1119-1126
    • /
    • 2002
  • In this paper, we propose two predictive spatial data mining based on spatial statistics and apply for predicting the forest fire hazardous area. These are conditional probability and likelihood ratio methods. In these approaches, the prediction models and estimation procedures are depending un the basic quantitative relationships of spatial data sets relevant forest fire with respect to selected the past forest fire ignition areas. To make forest fire hazardous area prediction map using the two proposed methods and evaluate the performance of prediction power, we applied a FHR (Forest Fire Hazard Rate) and a PRC (Prediction Rate Curve) respectively. In comparison of the prediction power of the two proposed prediction model, the likelihood ratio method is mort powerful than conditional probability method. The proposed model for prediction of forest fire hazardous area would be helpful to increase the efficiency of forest fire management such as prevention of forest fire occurrence and effective placement of forest fire monitoring equipment and manpower.

The Method of Linking Fire Survey Data with Satellite Image-based Fire Data (산불피해대장 정보와 위성영상 기반 산불발생데이터의 연계 방안)

  • Kim, Taehee;Choi, Jinmu
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1125-1137
    • /
    • 2020
  • This study aimed to propose the method of linking satellite image-based forest fire data to supplement the limitation of forest fire survey data that records only the ignition location and area of forest fire. For this purpose, a method was derived to link the fire survey data provided by the Korea Forest Service between January 2012 and December 2019 with MODIS and VIIRS image-based forest fire data. As a result, MODIS and VIIRS-based forest fire data out of 191 wildfires in the forest fire survey data were able to identify 11% and 44% of fire damage area, respectively. An average of 56% of forest damage area was extracted from VIIRS-based forest fire data compared to forest fire areas identified by high-resolution Sentinel-2A satellites. Therefore, for large-scale forest fires, VIIRS wildfire data can be used to compensate for the limitations of forest fire survey data that records only the ignition location and area.

Estiamtion of Time Series Model on Forest Fire Occurrences and Burned Area from 1970 to 2005 (1970-2005년 동안의 산불 발생건수 및 연소면적에 대한 시계열모형 추정)

  • Lee, Byungdoo;Chung, Joosang
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.6
    • /
    • pp.643-648
    • /
    • 2006
  • It is important to understand the patterns of forest fire in terms of effective prevention and suppression activities. In this study, the monthly forest fire occurrences and their burned areas were investigated to enhance the understanding of the patterns of forest fire in Korea. The statistics of forest fires in Korea, 1970 through 2005, built by Korea Forest Service was analyzed by using time series analysis technique to fit ARIMA models proposed by Box-Jenkins. The monthly differences in forest fire characteristics were clearly distinguished, with 59% of total forest fire occurrences and 72% of total burned area being in March and April. ARIMA(1, 0, 1) was the best fitted model to both the fire accurrences and the burned area time series. The fire time series have a strong relation to the fire occurrences and the burned area of 1 month and 12 months before.

An Quantitative Analysis of Severity Classification and Burn Severity for the Large Forest Fire Areas using Normalized Burn Ratio of Landsat Imagery (Landsat 영상으로부터 정규탄화지수 추출과 산불피해지역 및 피해강도의 정량적 분석)

  • Won, Myoung-Soo;Koo, Kyo-Sang;Lee, Myung-Bo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.3
    • /
    • pp.80-92
    • /
    • 2007
  • Forest fire is the dominant large-scale disturbance mechanism in the Korean temperate forest, and it strongly influences forest structure and function. Moreover burn severity incorporates both short- and long-term post-fire effects on the local and regional environment. Burn severity is defined by the degree to which an ecosystem has changed owing to the fire. Vegetation rehabilitation may specifically vary according to burn severity after fire. To understand burn severity and process of vegetation rehabilitation at the damaged area after large-fire is required a lot of man powers and budgets. However the analysis of burn severity in the forest area using satellite imagery can acquire rapidly information and more objective results remotely in the large-fire area. Space and airbone sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. For classifying fire damaged area and analyzing burn severity of Samcheok fire area occurred in 2000, Cheongyang fire in 2002, and Yangyang fire in 2005 we utilized Normalized Burn Ratio(NBR) technique. The NBR is temporally differenced between pre- and post-fire datasets to determine the extent and degree of change detected from burning. In this paper we use pre- and post-fire imagery from the Landsat TM and ETM+ imagery to compute the NBR and evaluate large-scale patterns of burn severity at 30m spatial resolution. 65% in the Samcheok fire area, 91% in the Cheongyang fire area and 65% in the Yangyang fire area were corresponded to burn severity class above 'High'. Therefore the use of a remotely sensed Differenced Normalized Burn Ratio(${\Delta}NBR$) by RS and GIS allows for the burn severity to be quantified spatially by mapping damaged domain and burn severity across large-fire area.

  • PDF

Implementation of Fire Risk Estimation System for various Fire Situations using Multiple Sensors (다중 센서들을 이용한 다양한 화재 상황의 위험도 추정 시스템 개발)

  • Lee, Kwangjae;Lee, Youn-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.394-398
    • /
    • 2016
  • In this paper, a fire detection system based on quantitative risk estimation is presented. Multiple sensors are used to build a comprehensive indicator that represents the risk of fire quantitatively. The proposed fire risk estimation method consists of two stages which determines the occurrence of fire and estimates the toxicity of the surveillance area. In the first stage, fire is reliably detected under diverse fire scenarios. The risk of fire is estimated in the second stage. Applying Purser's Fractional Effective Dose (FED) model which quantitates harmfulness of toxic gases, the risk of the surveillance area and evacuation time are calculated. A fire experiment conducted using four different types of combustion materials for the verification of the system resulted in a maximum error rate of 12.5%. By using FED calculation and risk estimation methods, the proposed system can detect various signs of fire faster than conventional systems.

Analysis of forest fire danger rating on the forest characteristic of thinning area and non-thinning area (숲 가꾸기 실행 및 미실행지의 임분특성에 따른 산불위험도 분석)

  • Lee, Si-Young;Lee, Myung-Woog;Chae, Hee-Min;Won, Myoung-Soo;Yeom, Chan-Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.217-222
    • /
    • 2007
  • Since 1973, we attain a successful achievement of nation-wide afforestation such as a thick forest and heaped-up leaves. However, the higher of the formation density in forest, the more dangerous to be a large-scale forest fire whenever fire occurs. According to the type of forest in the country, 42% of the forest is occupied by conifer forest that are highly flammable, and the distribution of forest age is in a transition period from immature forest to mature one. And the structure is too weak to the forest fire for the occurrence and spread because there are too many scrub and shrub trees in the forest. As a matter of course, it is on the increase of the thinning-forest that can shift the forest structure from a weak on forest fire to a strong one nowaday. In other words, thinning-forest has primary purposes such as the promotion of producing forest trees, production of excellent timbers, and build-up of public forest area. Furthermore, in some reports, the reduction of ladder fuel by eliminating the vertical/horizontal fuel in a forest and ensuring spaces in the forest can decrease the occurrence of forest fire and the risk of spread of burning as by-effect. Therefore, this study is designed to clarify the relation with the risk of forest fire by an on-spat-investigation of the characteristics of forest composition on the thinning and the non-thinning area.

  • PDF