• Title/Summary/Keyword: Finite-element

Search Result 22,283, Processing Time 0.039 seconds

A Study of Developing Stamping Die by Using One-Step Form Method in Auto-Body Panel Stamping Process (차체 판넬 스템핑 공정에서 One-step Form 해석방법을 이용한 금형개발에 관한 연구)

  • Hwang Jae Sin;Jung Dong Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.350-359
    • /
    • 2005
  • Finite element method is a very effective method to simulate the forming processes with good prediction of the deformation behaviour. For the finite element modeling of sheet mental forming the accurate die model is required. Among finite element method, the static-implicit finite element method is applied effectively to analyze real-size auto-body panel stamping processes, which include the forming stage. This study is about analyzing the stamping process problems by using AutoForm commercial software which used static-implicit method. According to this study, the results of simulation will give engineers good information to access the die design of optimization.

A MULTISCALE MORTAR MIXED FINITE ELEMENT METHOD FOR SLIGHTLY COMPRESSIBLE FLOWS IN POROUS MEDIA

  • Kim, Mi-Young;Park, Eun-Jae;Thomas, Sunil G.;Wheeler, Mary F.
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.5
    • /
    • pp.1103-1119
    • /
    • 2007
  • We consider multiscale mortar mixed finite element discretizations for slightly compressible Darcy flows in porous media. This paper is an extension of the formulation introduced by Arbogast et al. for the incompressible problem [2]. In this method, flux continuity is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. Optimal fine scale convergence is obtained by an appropriate choice of mortar grid and polynomial degree of approximation. Parallel numerical simulations on some multiscale benchmark problems are given to show the efficiency and effectiveness of the method.

Finite Element Crash Analysis of Support Structures Made of Various Composite Materials (다양한 복합소재를 적용한 지주구조의 유한요소 충돌 해석)

  • Kim, Gyu-Dong;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.45-50
    • /
    • 2015
  • This study performed a finite element crash analysis of support structures made of various composite materials for road facilities. The effects of different material properties of composites for various parameters are studied using the finite element commercial package for this study. In this study, the existing finite element analysis of composite post structures using the LS-DYNA program is further extended to compare dynamic behaviors against car crash of the structures made of various composite materials. The several numerical examples show the comparison of the nonlinear dynamic effects for different materials.

Finite Element Simulation of Axisymmetric Tube Hydroforming Processes (축대칭 튜브 하이드로포밍 공정의 유한요소 시뮬레이션)

  • Kim Y. S.;Keum Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.58-61
    • /
    • 2001
  • An implicit finite element formulation for axisymmetric tube hydroforming is investigated. In order to describe normal anisotropy of the tube, Hill's non-quadratic yield function is employed. The frictional contact between die and tube and frictionless contact between tube and fluid are considered using the mesh-normal vector computed from finite element mesh of the tube. In order to verify the validity of the developed finite element formulation, the axisymmetric tube bulge test is simulated and simulation results are compared with experimental measurements. In the axisymmetric tube hydroforming process, an optimal hydraulic curve is pursued by performing the simulation with various internal pressures and axial forces.

  • PDF

Finite Element Simulation of Axisymmeric Tube Hydroforming Processes (축대칭 튜브 하이드로포밍 공정의 유한요소 시뮬레이션)

  • 김용석;금영탁
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.75-83
    • /
    • 2002
  • Recently, the hydroforming process is widely applied to the automotive industry and rapidly spreaded to other industries. In this paper, An implicit finite element formulation for simulating axisymmetric tube hydroforming processes is performed. In order to describe normal anisotropy of the tube, Hill's non-quadratic yield function is employed. The frictional contact between die and tube and the frictionless contact between tube and fluid are considered using the mesh-normal vectors computed from the finite element mesh of the tube. The complete set of the governing relations comprising equilibrium and interfacial equations is linearized for Newton-Raphson procedure. In order to verify the validity of the developed finite element formulation, the axisymmetric tube bulge test is simulated and the simulation results are compared with experimental measurements. In a simulation of stepped circular tube hydroforming processes, an optimal hydraulic pressure curve is pursued by considering simultaneously internal pressures and axial forces.

The Analysis of H-Shape Rolling by the Finite Element Method (유한요소법에 의한 H형강 압연공정의 해석)

  • 신현우;김낙수;박종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1095-1105
    • /
    • 1993
  • Shape rolling processes to produce H-section beams are numerically simulated by the simplified three-dimensional finite element method. The 2-dimensional finite element method, used for the generalized plane strain condition, is combined with the slab method. Computer simulation results of the 19-passes in H-section beam rolling in practice include the grid distortions, the cross-sectional area changes, the roll separating forces, and the roll torques. Also, the amount of side spread can be found during the multi-pass rolling simulations. The finite element mesh system is remeshed with I-DEAS whenever the billet distorts severely. This study would contribute to CAD/CAM of shape rolling process through the optimal roll pass schedule.

Finite Element Analysis of Electromagnetic Systems Considering Hysteresis Characteristics (히스테리시스 특성을 고려한 전자계의 유한 요소 해석)

  • Kim, Hong-Gyu;Hong, Seon-Gi;Jeong, Hyeon-Gyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.3
    • /
    • pp.118-123
    • /
    • 1999
  • This paper describes the finite element procedure including the magnetic hysteresis phenomena. The magnetization-dependent Preisach model is employed to simulate the magnetic hysteresis and applied to each elements. Magnetization is calculated by the Fibonacci search method for the applied field in the implementation of the magnetization-dependent model. This can calculate the magnetization very accurately with small iteration numbers. The magnetic field intensity and the magnetization corresponding to the magnetic flux density obtained by the finite element analysis(FEA) are computed at the same time under the condition that these balues must satisfy the constitutive equation. In order to reduce the total calculation cost, pseudo-permeability is used for the input for the FEA. It is found that the presented method is very useful in combining the hysteresis model with the finite element method.

  • PDF

Behavior of Soil-Reinforced Segmental Retaining Walls Subjected to Earthquake Loading (보강토 옹벽의 지진시 거동)

  • 유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.379-386
    • /
    • 2000
  • This paper presents the results of finite element analysis on the seismic response of a soil-reinforced segmental retaining wall subjected to a prescribed earthquake record. The results of finite element analysis indicate that the maximum wall displacement occurs at the top, exhibiting a cantilever type of wall movement. Also revealed is that the increase in reinforcement force is more pronounced in the upper part of the reinforced zone, resulting in a more or less uniform distribution. None of the design guidelines appears to be able to correctly predict the dynamic force increase when compared with the results of finite element analysis. The calculation model adopted by the NCMA guideline, however, appears to compare better with the results of finite element analysis as well as field survey than the FHWA guideline. Based on the findings from this study, a number of implications to the current design methods are discussed.

  • PDF

LARGE TIME-STEPPING METHOD BASED ON THE FINITE ELEMENT DISCRETIZATION FOR THE CAHN-HILLIARD EQUATION

  • Yang, Yanfang;Feng, Xinlong;He, Yinnian
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1129-1141
    • /
    • 2011
  • In this paper, a class of large time-stepping method based on the finite element discretization for the Cahn-Hilliard equation with the Neumann boundary conditions is developed. The equation is discretized by finite element method in space and semi-implicit schemes in time. For the first order fully discrete scheme, convergence property is investigated by using finite element analysis. Numerical experiment is presented, which demonstrates the effectiveness of the large time-stepping approaches.

Application of Finite Element Method to Floor Impact Vibration Analysis in the Apartment Buildings (공동주택의 바닥 충격 진동 해석을 위한 유한요소법 응용)

  • Seo, Sang-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.387-390
    • /
    • 2005
  • Finite element method was applied to the vibration analysis of concrete slab system in apartment building. To save the time and cost the 2 dimensional finite element model was proposed. At first, experimental results show that sound peak components to influence the overall level and the rating of floor impact sound insulation were coincident with natural frequencies of the reinforced concrete slab. Second, there is linear relationship between the impact sound pressure level and vibration acceleration level. Third, 2 dimensional finite element model was enough to analyze the vibration analysis of floor structure system.

  • PDF