• Title/Summary/Keyword: Finite-difference method

Search Result 2,416, Processing Time 0.032 seconds

Scattering characteristics of metal and dielectric optical nano-antennas

  • Ee, Ho-Seok;Lee, Eun-Khwang;Song, Jung-Hwan;Kim, Jinhyung;Seo, Min-Kyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.76.1-76.1
    • /
    • 2015
  • Optical resonances of metallic or dielectric nanoantennas enable to effectively convert free-propagating electromagnetic waves to localized electromagnetic fields and vice versa. Plasmonic resonances of metal nanoantennas extremely modify the local density of optical states beyond the optical diffraction limit and thus facilitate highly-efficient light-emitting, nonlinear signal conversion, photovoltaics, and optical trapping. The leaky-mode resonances, or termed Mie resonances, allow dielectric nanoantennas to have a compact size even less than the wavelength scale. The dielectric nanoantennas exhibiting low optical losses and supporting both electric and magnetic resonances provide an alternative to their metallic counterparts. To extend the utility of metal and dielectric nanoantennas in further applications, e.g. metasurfaces and metamaterials, it is required to understand and engineer their scattering characteristics. At first, we characterize resonant plasmonic antenna radiations of a single-crystalline Ag nanowire over a wide spectral range from visible to near infrared regions. Dark-field optical microscope and direct far-field scanning measurements successfully identify the FP resonances and mode matching conditions of the antenna radiation, and reveal the mutual relation between the SPP dispersion and the far-field antenna radiation. Secondly, we perform a systematical study on resonant scattering properties of high-refractive-index dielectric nanoantennas. In this research, we examined Si nanoblock and electron-beam induced deposition (EBID) carbonaceous nanorod structures. Scattering spectra of the transverse-electric (TE) and transverse-magnetic (TM) leaky-mode resonances are measured by dark-field microscope spectroscopy. The leaky-mode resonances result a large scattering cross section approaching the theoretical single-channel scattering limit, and their wide tuning ranges enable vivid structural color generation over the full visible spectrum range from blue to green, yellow, and red. In particular, the lowest-order TM01 mode overcomes the diffraction limit. The finite-difference time-domain method and modal dispersion model successfully reproduce the experimental results.

  • PDF

A Study of Mixed Convection on a Flat Plate with an Unheated Starting Length (비가열부가 있는 평판에서의 혼합대류에 관한 연구)

  • 김민수;강영규;백병준;박복춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1304-1312
    • /
    • 1993
  • The buoyancy effects on mixed convection heat transfer over a flat plate surface with unheated starting length is reported. The governing equations are solved by a finite difference method using Patankar scheme and the solution was numerically obtained for various mixed convection parametr $Gr_{x}/Re_{x}^3$, and Prandtl number of 0.7 Local heat flux was measured by using Schilieren Interferometer. The local heat transfer results show that the presence of the unheated starting length can significantly accentuate the effects of buoyancy. The degree of accentuation of the buoyancy effects is strongly influenced by the magnitude of $Gr_{x}/Re_{x}^3$. When the parameter is larger than the order of $10^{-3}$, the contribution of natural convection to the heat transfer coefficients increased significantly due to the unheated starting length. In contrast, when $Gr_{x}/Re_{x}^3$ is smaller then about $10^{-5}$ , the buoyancy contribution is essentially unaffected by the unheated starting length. The shape of the velocity profile is also found to be highly responsive to the interaction between the buoyancy and the starting length.

Optical Properties of Vertical Cavity Laser - Depleted Optical Thyristor for Low Threshold Current (낮은 문턱 전류를 위한 Vertical Cavity Laser - Depleted Optical Thyristor 의 레이징 특성에 관한 연구)

  • Choi Woon-Kyung;Choi Young-Wan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.7 s.349
    • /
    • pp.1-6
    • /
    • 2006
  • We show for the first time the optical properties of the selectively oxidized vertical cavity laser (VCL) - depleted optical thyristor (DOT), which has not only a low threshold current, but also a high sensitivity to the optical input light. In order to analyze their switching characteristics, nonlinear s-shaped current-voltage characteristics are calculated and the reverse full-depletion voltages (Vneg's) are obtained as function of semiconductor parameters by using a finite difference method (FDM). The selectively oxidized PnpN VCL-DOT clearly shows the nonlinear s-shaped current-voltage and lasing characteristics. A switching voltage of 5.24 V, a holding voltage of 1.50 V, a spectral response at 854.5 nm, and a very low threshold current of 0.65 mA is measured, making these devices attractive for optical processing applications.

A study on optimum design of a lightweight mirror (경량화 반사경의 최적설계에 관한 연구)

  • 박강수;박현철;조지현;윤성기;이준호
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.443-448
    • /
    • 2003
  • A study on optimum design of the lightweight mirror of a satellite camera is presented. An optical surface deformation of the lightweight mirror, which is a principal component of the camera system, is an important factor affecting the optical performance of the whole camera system. In this study, optimum design of the lightweight mirror is presented. Total weight of the mirror to reduce the optical surface deformation and the launching cost is used as an objective function. Peak-to-valley value and natural frequency of the mirror are given as constraints to the optimization problem. The sensitivities of the objective function and constraint are calculated by a finite difference method. The optimization procedure is carried out by the commercial optimizer, DOT. As a verification of the optimum design of the mirror, two design examples are treated. In the real application example, the lightweight mirror with 600mm effective diameter is treated. The optimized results with various design variables, which are obtained by considering thickness limitations, are analyzed.

Joint Inversion Analysis Using the Dispersion Characteristics of Love Wave and Rayleigh Wave (II) - Verification and Application of Joint Inversion Analysis - (러브파와 레일리파의 분산특성을 이용한 동시역산해석(II) - 동시역산해석기법의 검증 및 적용 -)

  • Lee Il-Wha;Joh Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.155-165
    • /
    • 2005
  • Love wave and Rayleigh wave are the major elastic waves belonging to the category of the surface wave. Those waves are used to determine the ground stiffness profile using their dispersion characteristics. The fact that Love wave is not contaminated by P-wave makes Love wave superior to Rayleigh wave and other body waves. Therefore, the information that Love wave carries is more distinct and clearer than that of others. Based on theoretical research, the joint inversion analysis that uses the dispersion information of both Love and Rayleigh wave was proposed. Numerical analysis, theoretical model test, and field test were performed to verify the joint inversion analysis. Results from 2D, 3D finite element analysis were compared with those from the transfer matrix method in the numerical analysis. On the other hand, the difference of results from each inversion analysis was investigated in the theoretical model analysis. Finally, practical applicability of the joint inversion analysis was verified by performing field test. As a result, it is confirmed that considering dispersion information of each wave simultaneously prevents excessive divergence and improves accuracy.

Dosimetric Analysis for Human Exposure to Body-Mounted Wireless Devices (인체 착용형 휴대 단말기에 대한 노출량 해석 연구)

  • Park Min-Young;Ko Chae-Ok;Kim Jeong-Ran;Pack Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.207-212
    • /
    • 2006
  • A variety of wireless devices are commercially available now. Most of studies, however, have been directed to the biological effects of mobile-phone EMF. In this paper, dosimetric analysis for wireless devices of head-mounted display type and a wristwatch type were made to investigate possible biological effects of these devices. SAR(Specific Absorption Rate) distributions were calculated using FDTD(Finite Difference Time Domain) method, for adult human models such as standard Korean human model and VHP(Visible Human Project) model, as well as scaled child models. Measurements were also performed for SAM phantom wearing a simplified prototype for a wireless device for validation of the simulation results. It has been found that children are more vulnerable to such exposure, and these devices could cause some biological effects even for relatively lower power compared to conventional mobile pones.

A Numerical Study on the Effect of Inlet Guide Vane Angle on the Performance of Francis Hydraulic Turbine

  • Kim Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.750-757
    • /
    • 2005
  • The objective of this study is an understanding of the effect of inlet flow angle on the output power performance of a Francis hydraulic turbine, An optimum induced angle at the inlet of the turbine is one of the most important design parameters to have the best performance of the turbine at a given operating condition, In general. rotating speed of the turbine is varied with the change of water mass flowrate in a volute, The induced angle of the inlet water should be properly adjusted to the operating condition to have maximum energy conversion efficiency of the turbine, In this study. a numerical simulation was conducted to have detail understanding of the flow phenomenon in the flow path and output power of the model Francis turbine. The indicated power produced by the model turbine at a given operating condition was found numerically and compared to the brake power of the turbine measured by experiment at KIER. From comparison of two results, turbine efficiency or energy conversion efficiency of the model turbine was estimated. From the study, it was found that the rotating power of the turbine linearly increased with the rotating speed. It means that the higher volume flow rate supplied. the bigger torque on the turbine shaft generated. The maximum brake efficiency of the turbine is around 46$\%$ at 35 degree of induced angle. The difference between numerical and experimental output of the model turbine is defined as mechanical efficiency. The maximum mechanical efficiency of the turbine is around 93$\%$ at 25$\∼$30 degree of induced angle.

Frture mapping and deep-seated ground water exploration in the crystalline rocks by integrated geophysical techniques (종합적 물리탐사에 의한 파쇄대 및 심부 지하수 탐사)

  • 정승환;김정호;조인기;전정수
    • The Journal of Engineering Geology
    • /
    • v.2 no.2
    • /
    • pp.113-130
    • /
    • 1992
  • Groundwater in crystalline basement is controlled primarily by tectonic fractures. It is evident that the delineation of the heavily faulted area and/or fractures deeply developped should be considerable value in deep-seated low enthalphy geothermal water. Electrical and electromagnetic methods have effectively been employed to map hydraulic faults and shear zones for groundwater exploration. In this study VLi; dipoledipole resistivity, controlled source audio~frequency magneto-telluric(CSAMT) and magnetic methods were applied in the Bomun resort area, adjacent to Kyongju city, southeastern part of Korea. The integrated geophysical tools employed in this experiment can be manifested themselves as: 1. Magnetic high for granite intrusions which is more favorable for geothermal gradient increase in depth. 2. VLF cross-over trends for mapping linear shallow conductive fractures and shear zones. 3. Dipole-dipole resistivity distributions for the deep-seated(less than 500m in depth) fractures and shear zones. The dipole-dipole resistivity field data were inverted to the true resistivity distribution with two-dimensional automatic inversion program based on the finite-difference method. 4. CSAMT provides an efficient way of delineating fractures and fault zones if the depth is greater than about 500m.

  • PDF

The Characteristics Analysis of Low Profile Meander 2-Layer Monopole Antenna (소형 미앤더 2-층 모노폴 안테나의 특성분석)

  • Jang, Yong-Woong;Lee, Sang-Woo;Shin, Ho-Sub
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.934-941
    • /
    • 2014
  • In this paper, we present a low profile 2-layered meander built-in monopole antenna for portable RFID reader using FDTD(Finite Difference Time Domain) method. The input impedance, return loss, and VSWR in the frequency domain are calculated by Fourier transforming the time domain results. The double meander 2-layer structure is used to enhance the impedance matching and increase the antenna gain. The measured bandwidth of the antenna is 0.895 GHz ~ 0.930 GHz for a S11 of less than -10dB. The measured peak gain of proposed low profile RFID built-in antenna is 2.3 dBi. And the proposed built-in antenna for portable RFID reader can offers relatively wide-bandwidth and high-gain characteristics, in respectively. Experimental data for the return loss and the gain of the antenna are also presented, and they are relatively in good agreement with the FDTD results. This antenna can be also applied to mobile communication field, energy fields, RFID, and home-network operations, broadcasting, and other low profile mobile systems.

Prediction MOdels for Channel Bed Evolution Due to Short Term Floods (단기간의 홍수에 의한 하상변동의 예측모형)

  • Pyo, Yeong-Pyeong;Sin, Cheol-Sik;Bae, Yeol-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.597-610
    • /
    • 1997
  • One-dimensional numerical models using finite difference methods for unsteady sediment transport on alluvial river channel are developed. The Preissmann implicit scheme and the Lax-Wendroff two-step explicit scheme with the Method of Characteristics for water motion and a forward time centered space explicit scheme for sediment motion are developed to simulate the sediment transport rate and the variation of channel bed level. The program correctness of each model is successfully verified using volume conservation tests. The sensitivity studies show that higher peak stage level, steeper channel slope and longer flooding duration produce more channel bed erosion. and median grain size, $D_{50}=0.4mm$ give maximum volume loss in this study. Finally, the numerical models are found to produce reasonable results from the various sensitivity tests which reveal that the numerical models have properly responded to the changes of each model parameter.

  • PDF