• Title/Summary/Keyword: Finite strain

Search Result 2,682, Processing Time 0.027 seconds

Sensitivity Analysis of Strain on Notches under Cyclic Loading to 2-D Finite Element Density in Elasto-Plastic Finite Element Analysis (탄소성 유한요소해석시 2차원 유한요소 밀도에 대한 반복하중이 작용하는 노치부의 변형률의 민감도 분석)

  • Jong-Sung Kim;Hyun-Su Jang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • This paper presents sensitivity analysis results of strain on notches under cycling loading to 2-D finite element density considering plasticity. Cylindrical notched specimens having some stress concentrations were modeled with 2-D axisymmetrical finite element having various finite element densities. Elasto-plastic finite element analysis was performed for the various finite element models subjected to cycling loading considering plasticity. The finite element analysis results were compared to investigate sensitivity of the finite element analysis variables such as von-Mises effective stress, accumulated equivalent plastic strain, and equivalent plastic strain to 2-D finite element density. As a result of the comparison, it was found that the accumulated equivalent plastic strain is more sensitive than the others whereas the von-Mises effective stress is much less sensitive.

The effect of finite strain on the nonlinear free vibration of a unidirectional composite Timoshenko beam using GDQM

  • Ghasemi, Ahmad Reza;Mohandes, Masood
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.379-397
    • /
    • 2016
  • In this manuscript, free vibrations of a unidirectional composite orthotropic Timoshenko beam based on finite strain have been studied. Using Green-Lagrange strain tensor and comprising all of the nonlinear terms of the tensor and also applying Hamilton's principle, equations of motion and boundary conditions of the beam are obtained. Using separation method in single-harmonic state, time and locative variables are separated from each other and finally, the equations of motion and boundary conditions are gained according to locative variable. To solve the equations, generalized differential quadrature method (GDQM) is applied and then, deflection and cross-section rotation of the beam in linear and nonlinear states are drawn and compared with each other. Also, frequencies of carbon/epoxy and glass/epoxy composite beams for different boundary conditions on the basis of the finite strain are calculated. The calculated frequencies of the nonlinear free vibration of the beam utilizing finite strain assumption for various geometries have been compared to von Karman one.

Development of a Program for Consolidation Analysis Using Nonlinear Finite Strain Consolidation Theory (비선형 유한변형률 압밀이론을 이용한 압밀 해석 프로그램 개발)

  • Lee, Song;Lee, Kyu-Hwan;Jeon, Je-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.02a
    • /
    • pp.36-47
    • /
    • 1999
  • Terzaghi's theory of one-dimensional consolidation is restricted in its applicability to relatively thin layers and small incremental loading. Because it is assumed to infinitesimal strain and linear material function. For this reason, Gibson et al established a rigorous formulation for the one-dimensional nonlinear finite strain consolidation theory. There are some difficulties in the application of finite strain consolidation theory. The developed program consisted of several forms and modules. These forms and modules with graphic-user-interfaced format are used in analysis of consolidation practices. For the purpose of verification of developed program. the results of case study and prediction of developed program are compared. The results of comparison is fairly well with prediction and measured data. And with varying finite strain consolidation parameter, g(e) or λ(e), the sensitivity of predicted values were examined.

  • PDF

Determination of true stress-strain curve of type 304 and 316 stainless steels using a typical tensile test and finite element analysis

  • Kweon, Hyeong Do;Kim, Jin Weon;Song, Ohseop;Oh, Dongho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.647-656
    • /
    • 2021
  • Knowing a material's true stress-strain curve is essential for performing a nonlinear finite element analysis to solve an elastoplastic problem. This study presents a simple methodology to determine the true stress-strain curve of type 304 and 316 austenitic stainless steels in the full range of strain from a typical tensile test. Before necking, the true stress and strain values are directly converted from engineering stress and strain data, respectively. After necking, a true stress-strain equation is determined by iteratively conducting finite element analysis using three pieces of information at the necking and the fracture points. The Hockett-Sherby equation is proposed as an optimal stress-strain model in a non-uniform deformation region. The application to the stainless steel under different temperatures and loading conditions verifies that the strain hardening behavior of the material is adequately described by the determined equation, and the estimated engineering stress-strain curves are in good agreement with those of experiments. The presented method is intrinsically simple to use and reduces iterations because it does not require much experimental effort and adopts the approach of determining the stress-strain equation instead of correcting the individual stress at each strain point.

Strain distribution between CFRP strip and concrete at strengthened RC beam against shear

  • Anil, Ozgur;Bulut, Nalan;Ayhan, Murat
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.509-525
    • /
    • 2012
  • In recent years, CFRP material usage in strengthening applications gradually became widespread. Especially, the studies on the strengthening of shear deficient reinforced concrete beams with CFRP strips are chosen as a subject to numerous experimental studies and research on this subject are increased rapidly. The most important variable, that is affected on the failure mode of CFRP strips and that is needed for determining the shear capacity of the strengthened reinforced concrete beams, is the strain distribution between CFRP strips and concrete. Numerous experimental studies are encountered in the literature about the determination of strain distribution between CFRP strips and concrete. However, these studies mainly focused on the CFRP strips under axial tension. There are very limited numbers of experimental and analytic studies examining the strain distribution between concrete and CFRP strips, which are under combined stresses due to the effects of shear force and bending moment. For this reason, existing experimental study in the literature is used as model for ANSYS finite element software. Nonlinear finite element analysis of RC beams strengthened against shear with CFRP strips under reverse cyclic loading is performed. The strain distributions between CFRP strips and concrete that is obtained from finite element analysis are compared with the results of experimental measurements. It is seen that the experimental results are consisted with the results derived from the finite element analysis and important findings on the strain distribution profile are reached by obtaining strain values of many points using finite element method.

Investigation of Strain Measurements using Digital Image Correlation with a Finite Element Method

  • Zhao, Jian;Zhao, Dong
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.399-404
    • /
    • 2013
  • This article proposes a digital image correlation (DIC) strain measurement method based on a finite element (FE) algorithm. A two-step digital image correlation is presented. In the first step, the gradient-based subpixels technique is used to search the displacements of a region of interest of the specimen, and then the strain fields are obtained by utilizing the finite element method in the second step. Both simulation and experiment processing, including tensile strain deformation, show that the proposed method can achieve nearly the same accuracy as the cubic spline interpolation method in most cases and higher accuracy in some cases, such as the simulations of uniaxial tension with and without noise. The results show that it also has a good noise-robustness. Finally, this method is used in the uniaxial tensile testing for Dahurian Larch wood specimens with or without a hole, and the obtained strain values are close to the results which were obtained from the strain gauge and the cubic spline interpolation method.

Strain-smoothed polygonal finite elements

  • Hoontae Jung;Chaemin Lee;Phill-Seung Lee
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.311-324
    • /
    • 2023
  • Herein, we present effective polygonal finite elements to which the strain-smoothed element (SSE) method is applied. Recently, the SSE method has been developed for conventional triangular and quadrilateral finite elements; furthermore, it has been shown to improve the performance of finite elements. Polygonal elements enable various applications through flexible mesh handling; however, further development is still required to use them more effectively in engineering practice. In this study, piecewise linear shape functions are adopted, the SSE method is applied through the triangulation of polygonal elements, and a smoothed strain field is constructed within the element. The strain-smoothed polygonal elements pass basic tests and show improved convergence behaviors in various numerical problems.

Finite Element Modeling of Strain Localization Zone in Concrete (콘크리트 변형률국소화영역의 유한요소모델링)

  • 송하원;나웅진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.53-60
    • /
    • 1997
  • The strain localization of concrete is a phenomenon such that the deformation of concrete is localized in finite region along with softening behavior. The objective of this paper is to develope a consistent algorithm for the finite element modeling of localized zone in the analysis of the strain-localization in concrete. For modeling of the localized zone in concrete under strain localization, a general Drucker-Prager failure criterion which can consider nonlinear strain softening behavior of concrete after peak-stress is introduce. The return-mapping algorithm is used for the integration of the elasto-plastic rate equation and the consistent tangent modulus is derived. Using finite element program implemented with the developed algorithms, strain localization behaviors for the different sizes of concrete specimen under compression are simulated.

  • PDF

A Study on the Energy Release Rate of Delaminated Composite Laminates (층간분리된 복합적층판의 에너지 방출률에 관한 연구)

  • Cheong, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.97-107
    • /
    • 1995
  • Global postbuckling analysis is accomplished for one-dimensional and two-dimensional delaminations. A new finite element model, which can be used to model the global postbuckling analysis of one-dimensional and two-dimensional delaminations, is presented. In order to calculate the strain energy release rate, geometrically nonlinear analysis is accomplished, and the incremental crack closure technique is introduced. To check the effectiveness of the finite element models and the incremental crack closure technique, the simplified closed-form sloution for a through-the-width delamination with plane strain condition is derived and compared with the finite element result. The finite element results show good agreement with the closed-foul1 solutions. The present method was extended to calculate the strain energy release rate for two-dimensional delamination. For a symmetric circular delamination, the strain energy release rate shows great variation along the delamination front. and the delamination growth appears to occur perpendicular to the loading direction.

  • PDF

Finite Element Analysis of Strain and Residual Stress in Weld Specimen (용접시편 변형률 및 잔류응력의 유한요소해석)

  • 양승용;구병춘;정흥채
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.85-92
    • /
    • 2004
  • This paper consists of two parts. One is finite element analysis of the redistribution of residual stresses of weld specimen by cutting. This work is necessary to predict the actual residual stress distribution of weld specimens used in fatigue test. The other subject is to calculate the relaxation of residual stress and the strain field induced by cyclic loading. To obtain fatigue life of weldment, the value of strain amplitude at each position is necessary, for example in the strain-life approach, and the numerical results can be used to verify experimental strain measurements. Thermo mechanical finite element analyses were conducted on the commercial package ABAQUS.