• Title/Summary/Keyword: Finite groups

Search Result 365, Processing Time 0.021 seconds

Experimental study of a modeled building frame supported by pile groups embedded in cohesionless soil

  • Ravi Kumar Reddy, C.;Gunneswara Rao, T.D.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.321-336
    • /
    • 2011
  • This paper presents the results of static vertical load tests carried out on a model building frame supported by pile groups embedded in cohesionless soil (sand). The effect of soil interaction on displacements and rotation at the column base and also the shears and bending moments in the columns of the building frame were investigated. The experimental results have been compared with those obtained from the finite element analysis and conventional method of analysis. Soil nonlinearity in the lateral direction is characterized by the p-y curves and in the axial direction by nonlinear vertical springs along the length of the piles (${\tau}-z$ curves) at their tips (Q-z curves). The results reveal that the conventional method gives the shear force in the column by about 40-60%, the bending moment at the column top about 20-30% and at the column base about 75-100% more than those from the experimental results. The response of the frame from the experimental results is in good agreement with that obtained by the nonlinear finite element analysis.

ON TATE-SHAFAREVICH GROUPS OVER CYCLIC EXTENSIONS

  • Yu, Ho-Seog
    • Honam Mathematical Journal
    • /
    • v.32 no.1
    • /
    • pp.45-51
    • /
    • 2010
  • Let A be an abelian variety defined over a number field K and let L be a cyclic extension of K with Galois group G = <${\sigma}$> of order n. Let III(A/K) and III(A/L) denote, respectively, the Tate-Shafarevich groups of A over K and of A over L. Assume III(A/L) is finite. Let M(x) be a companion matrix of 1+x+${\cdots}$+$x^{n-1}$ and let $A^x$ be the twist of $A^{n-1}$ defined by $f^{-1}{\circ}f^{\sigma}$ = M(x) where $f:A^{n-1}{\rightarrow}A^x$ is an isomorphism defined over L. In this paper we compute [III(A/K)][III($A^x$/K)]/[III(A/L)] in terms of cohomology, where [X] is the order of an finite abelian group X.

On the Mordell-Weil Groups of Jacobians of Hyperelliptic Curves over Certain Elementary Abelian 2-extensions

  • Moon, Hyun-Suk
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.419-424
    • /
    • 2009
  • Let J be the Jacobian variety of a hyperelliptic curve over $\mathbb{Q}$. Let M be the field generated by all square roots of rational integers over a finite number field K. Then we prove that the Mordell-Weil group J(M) is the direct sum of a finite torsion group and a free $\mathbb{Z}$-module of infinite rank. In particular, J(M) is not a divisible group. On the other hand, if $\widetilde{M}$ is an extension of M which contains all the torsion points of J over $\widetilde{\mathbb{Q}}$, then $J(\widetilde{M}^{sol})/J(\widetilde{M}^{sol})_{tors}$ is a divisible group of infinite rank, where $\widetilde{M}^{sol}$ is the maximal solvable extension of $\widetilde{M}$.

A CHARACTERIZATION OF GROUPS PSL(3, q) BY THEIR ELEMENT ORDERS FOR CERTAIN q

  • Darafsheh, M.R.;Karamzadeh, N.S.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.579-591
    • /
    • 2002
  • Let G be a finite group and $\omega$(G) the set of elements orders of G. Denote by h($\omega$(G)) the number of isomorphism classes of finite groups H satisfying $\omega$(G)=$\omega$(H). In this paper, we show that for G=PSL(3, q), h($\omega$(G))=1 where q=11, 12, 19, 23, 25 and 27 and h($\omega$(G)=2 where q = 17 and 29.

ON THE RATIO OF TATE-SHAFAREVICH GROUPS OVER CYCLIC EXTENSIONS OF ORDER p2

  • Yu, Hoseog
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.417-424
    • /
    • 2014
  • Let A be an abelian variety defined over a number field K and p be a prime. Define ${\varphi}_i=(x^{p^i}-1)/(x^{p^{i-1}}-1)$. Let $A_{{\varphi}i}$ be the abelian variety defined over K associated to the polynomial ${\varphi}i$ and let Ш($A_{{\varphi}i}$) denote the Tate-Shafarevich groups of $A_{{\varphi}i}$ over K. In this paper assuming Ш(A/F) is finite, we compute [Ш($A_{{\varphi}1}$)][Ш($A_{{\varphi}2}$)]/[Ш($A_{{\varphi}1{\varphi}2}$)] in terms of K-rational points of $A_{{\varphi}i}$, $A_{{\varphi}1{\varphi}2}$ and their dual varieties, where [X] is the order of a finite abelian group X.

COMMUTING POWERS AND EXTERIOR DEGREE OF FINITE GROUPS

  • Niroomand, Peyman;Rezaei, Rashid;Russo, Francesco G.
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.855-865
    • /
    • 2012
  • Recently, we have introduced a group invariant, which is related to the number of elements $x$ and $y$ of a finite group $G$ such that $x{\wedge}y=1_{G{\wedge}G}$ in the exterior square $G{\wedge}G$ of $G$. This number gives restrictions on the Schur multiplier of $G$ and, consequently, large classes of groups can be described. In the present paper we generalize the previous investigations on the topic, focusing on the number of elements of the form $h^m{\wedge}k$ of $H{\wedge}K$ such that $h^m{\wedge}k=1_{H{\wedge}K}$, where $m{\geq}1$ and $H$ and $K$ are arbitrary subgroups of $G$.

Cryptographic Protocols using Semidirect Products of Finite Groups

  • Lanel, G.H.J.;Jinasena, T.M.K.K.;Welihinda, B.A.K.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.17-27
    • /
    • 2021
  • Non-abelian group based cryptosystems are a latest research inspiration, since they offer better security due to their non-abelian properties. In this paper, we propose a novel approach to non-abelian group based public-key cryptographic protocols using semidirect products of finite groups. An intractable problem of determining automorphisms and generating elements of a group is introduced as the underlying mathematical problem for the suggested protocols. Then, we show that the difficult problem of determining paths and cycles of Cayley graphs including Hamiltonian paths and cycles could be reduced to this intractable problem. The applicability of Hamiltonian paths, and in fact any random path in Cayley graphs in the above cryptographic schemes and an application of the same concept to two previous cryptographic protocols based on a Generalized Discrete Logarithm Problem is discussed. Moreover, an alternative method of improving the security is also presented.

GEOMETRIC REPRESENTATIONS OF FINITE GROUPS ON REAL TORIC SPACES

  • Cho, Soojin;Choi, Suyoung;Kaji, Shizuo
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1265-1283
    • /
    • 2019
  • We develop a framework to construct geometric representations of finite groups G through the correspondence between real toric spaces $X^{\mathbb{R}}$ and simplicial complexes with characteristic matrices. We give a combinatorial description of the G-module structure of the homology of $X^{\mathbb{R}}$. As applications, we make explicit computations of the Weyl group representations on the homology of real toric varieties associated to the Weyl chambers of type A and B, which show an interesting connection to the topology of posets. We also realize a certain kind of Foulkes representation geometrically as the homology of real toric varieties.