• Title/Summary/Keyword: Finite ground

Search Result 994, Processing Time 0.028 seconds

Application of Non-Open Cut H.A.S Method to Improve Constructability (시공성 향상을 위한 비개착 H.A.S 공법 적용에 관한 연구)

  • Choi, Jung-Youl;Jang, Sung-Ho;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.765-773
    • /
    • 2022
  • This study is a study on the application of a horizontal excavation machine system to improve constructability. In this study, the structural stability of non-covered temporary facilities was evaluated by comparing field measurements and numerical analysis. In addition, the appropriateness of the measurement results was analyzed by comparing and analyzing the results of numerical analysis with the analysis results applying the Gaussian probability density function to the measurement results. In this study, structural safety and long-term durability of the linkage were analyzed based on numerical analysis. As a result of the study, it was analyzed that the non-open cut method (H.A.S. method) of this study secures structural safety and constructability as the behavior in the actual construction process is more safe than the numerical analysis results, even if the uncertainty of the ground condition is taken into account.

Liquefaction Evaluation by One-Dimensional Effective Stress Analysis Using UBC3D-PLM Model (UBC3D-PLM 모델을 이용한 1차원 유효응력해석에 의한 액상화 평가)

  • Jung-Hoe Kim;Hyun-Sik Jin
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.151-167
    • /
    • 2023
  • This study compares the revised method in loose saturated sandy ground where the LNG storage tank will be installed with an evaluation method by one-dimensional effective stress analysis using the UBC3D-PLM model. Various laboratory and field tests were conducted to establish the parameters necessary for evaluation. The revised liquefaction evaluation method using the seismic response analysis result and N value from standard penetration testing evaluated the possibility of liquefaction as high, but assessment using effective stress analysis, which can consider various liquefaction resistance factors, found the site to be somewhat stable against liquefaction. One-dimensional finite element analysis using UBC3D-PLM modeling facilitated easier assessment of stability against liquefaction than the other methods and minimized the area required for reinforcement against liquefaction. In addition, it is expected that two-and three-dimensional numerical analysis considering the foundation of the LNG storage tank can identify the seismic design and behavior when liquefaction occurs.

Long-term Behavior Characteristics of Backfilled Ground by EPS (EPS로 뒷채움된 지반의 장기거동특성)

  • Chun, Byung-Sik;Jung, Chang-Hee;Choi, Hui-Rim
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.151-161
    • /
    • 2007
  • EPS provides a superb self-sufficient stability. Studies on the process of EPS construction method focus on the inchoate phase of general construction, which is increasingly applied to construction sites throughout the world. Unfortunately, there has been little study on the durability and long-term soil behavior involving EPS materials. In this study, the boring, in-site and laboratory tests were conducted to examine the long-term soil behavior in the back-filling of alternating behind the side to which EPS was applied. And results of finite element analysis considering various test results and the soil behavior data measured during the construction show that EPS construction method is a superb process that relieves the load and consequently reduces the settlement, alleviates the stress on the abutment, and prevents lateral flow.

Analysis on the Influence and Reinforcement Effect of Adjacent Pier Structures according to the Underpass Construction (지하차도 시공에 따른 인접 교각구조물 영향 및 보강효과 분석)

  • Lee, Donghyuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.4
    • /
    • pp.29-39
    • /
    • 2022
  • In order to solve the serious traffic congestion in seoul metropolitan city, large-scale underground space development such as underpasses, deep underground roads, and GTX (Great Train eXpress) is being carried out. In order to minimize the impact of the adjacent seoul metro line A pier foundation and stability due to the construction of the underground road in Seoul, earth retaining structures were reinforced and the foundation was reinforced as well. In this study, three-dimensional finite element mehtod analysis was performed to evaluate the effect on adjacent construction and to review the stability of the underpass excavation work. The reinforcement effect was quantitatively analyzed through numerical analysis. As a result of the analysis, compared to the result of performing the existing reinforcement when overlapping CIP and ground reinforcement grouting were performed, the displacement of the earth retaining structures was reduced by more than 50%, and stress of the foundation piles were also reduced by more than 45%. Based on the analysis of the numerical analysis results, it was confirmed that the displacement of the walls of earth retaining structures during adjacent construction should be strictly controlled.

Seismic fragility curves for a concrete bridge using structural health monitoring and digital twins

  • Rojas-Mercedes, Norberto;Erazo, Kalil;Di Sarno, Luigi
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.503-515
    • /
    • 2022
  • This paper presents the development of seismic fragility curves for a precast reinforced concrete bridge instrumented with a structural health monitoring (SHM) system. The bridge is located near an active seismic fault in the Dominican Republic (DR) and provides the only access to several local communities in the aftermath of a potential damaging earthquake; moreover, the sample bridge was designed with outdated building codes and uses structural detailing not adequate for structures in seismic regions. The bridge was instrumented with an SHM system to extract information about its state of structural integrity and estimate its seismic performance. The data obtained from the SHM system is integrated with structural models to develop a set of fragility curves to be used as a quantitative measure of the expected damage; the fragility curves provide an estimate of the probability that the structure will exceed different damage limit states as a function of an earthquake intensity measure. To obtain the fragility curves a digital twin of the bridge is developed combining a computational finite element model and the information extracted from the SHM system. The digital twin is used as a response prediction tool that minimizes modeling uncertainty, significantly improving the predicting capability of the model and the accuracy of the fragility curves. The digital twin was used to perform a nonlinear incremental dynamic analysis (IDA) with selected ground motions that are consistent with the seismic fault and site characteristics. The fragility curves show that for the maximum expected acceleration (with a 2% probability of exceedance in 50 years) the structure has a 62% probability of undergoing extensive damage. This is the first study presenting fragility curves for civil infrastructure in the DR and the proposed methodology can be extended to other structures to support disaster mitigation and post-disaster decision-making strategies.

Performance-based plastic design of buckling-restrained braced frames with eccentric configurations

  • Elnaz Zare;Mohammad Gholami;Esmail Usefvand;Mojtaba Gorji Azandariani
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.317-331
    • /
    • 2023
  • The buckling-restrained braced frames with eccentric configurations (BRBFECs) are stable cyclic behavior and high energy absorption capacity. Furthermore, they have an architectural advantage for creating openings like eccentrically braced frames (EBFs). In the present study, it has been suggested to use the performance-based plastic design (PBPD) method to calculate the design base shear of the BRBFEC systems. Moreover, in this study, to reduce the required steel material, it has been suggested to use the performance-based practical design (PBPD) method instead of the force-based design (FBD) method for the design of this system. The 3-, 6-, and 9-story buildings with the BRBFEC system were designed, and the finite element models were modeled. The seismic performance of the models was investigated using two suits of ground motions representing the maximum considered earthquake (MCE) and design basis earthquake (DBE) seismic hazard levels. The results showed that the models designed with the suggested method, which had lower weights compared to those designed with the FBD method, had a desirable seismic performance in terms of maximum story drift and ductility demand under earthquakes at both MCE and DBE seismic hazard levels. This suggests that the steel weights of the structures designed with the PBPD method are about 13% to 18% lesser than the FBD method. However, the residual drifts in these models were higher than those in the models designed with the FBD method. Also, in earthquakes at the DBE hazard level, the residual drifts in all models except the PBPD-6s and PBPD-9s models were less than the allowable reparability limit.

Groundwater vulnerability assessment in the southern coastal sedimentary basin of Benin using DRASTIC, modified DRASTIC, Entropy Weight DRASTIC and AVI

  • Agossou, Amos;Yang, Jeong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.152-152
    • /
    • 2021
  • The importance of groundwater has long been recognized, but the ground water potential to become contaminated as a result of human activities has only been recognized in recently. Before 1980 it was thought that soils served as filters, preventing harmful substances deposited at the surface from migrating into groundwater. Today it is known that soils have a finite capacity to protect groundwater. It can be contaminated from divers sources. Therefore, Assessment of aquifer vulnerability to pollution is essential for the protection and management of groundwater and land use planning. In this study, we used DRASTIC and AVI for groundwater vulnerability to contamination assessment. the different methods were applied to the southern coastal sedimentary basin of Benin and DRASTIC method was modified in two different steps. First, we modified DRASTIC by adding land use parameter to include the actual pollution sources (DRASTICLcLu) and second, classic DRASTIC weights was modified using Shannon's entropy (Entropy weight DRASTIC). The reliability of the applied approaches was verified using nitrate (NO3-) concentration and by comparing the overall vulnerability maps to the previous researches in the study area and in the world. The results from validation showed that the addition of landcover/land use parameter to the classic DRASTIC helps to improve the method for better definition of the vulnerable areas in the basin and also, the weight modification using entropy improved better the method because Entropy weight DRASTICLcLu showed the highest correlation with nitrate concentration in the study basin. In summary the weight modification using entropy approach reduced the uncertainty of the human subjectivity in assigning weights and ratings in the standard DRASTIC.

  • PDF

Numerical analyses for mechanical behavior of cut-and-cover tunnel with precast arch type (프리캐스트 아치형 개착식 터널의 역학적 거동에 관한 수치해석)

  • Hwang, Jae-Hong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.315-325
    • /
    • 2009
  • The thickness of the material can be thinned because arch cut-and-cover tunnel has the support mechanism by the axial force, and the ground reaction force due moderate deformation can be expected thereby making it be dynamically advantageous, therefore the arch cut-and-cover tunnel has become more widely used. An important characteristic of the arch cut-and-cover tunnel is that the thickness of the material can be thinned because precast arch type has the support mechanism by the axial force. However, there is a different stress state surrounding the structures between normally excavated tunnels and cut-and-cover tunnels, it should be considered at designing. Therefore, finite element method was carried out to examine the mechanical behavior of the precast arch cut-and-cover tunnel considering construction procedure.

Heat of hydration characteristics on high-performance concrete for large dimensional tunnel linings (대단면 터널 라이닝 적용 고성능 콘크리트의 수화열 특성)

  • Min, Kyung-Hwan;Jung, Hyung-Chul;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.37-45
    • /
    • 2009
  • In this study, experiments of development and application of 50 MPa high-performance concrete are performed for large dimensional tunnel linings. In order to produce 50MPa high-performance concrete, eight optimal mixtures replacing with fly ash and ground granulated blast furnace slag up to 50 percent of type I Portland cement were selected then tests for mechanical properties and simple adiabatic temperature rise tests were carried out. And in order to assess the quantitative characteristics of heat of hydrations of developed mixtures, three mixtures that the type I Portland cement (OPC) and each one mixture of binary and ternary mixtures (BS30, F15S35) were reselected, then the adiabatic temperature rise tests and mock-up tests were performed. Consequently, the comparisons between the results of mock-up tests and finite element analysis can be enhanced the reliability of analyzing routines of thermal behaviours of the developed high-performance concrete.

Investigation of effects of twin excavations effects on stability of a 20-storey building in sand: 3D finite element approach

  • Hemu Karira;Dildar Ali Mangnejo;Aneel Kumar;Tauha Hussain Ali;Syed Naveed Raza Shah
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.427-443
    • /
    • 2023
  • Across the globe, rapid urbanization demands the construction of basements for car parking and sub way station within the vicinity of high-rise buildings supported on piled raft foundations. As a consequence, ground movements caused by such excavations could interfere with the serviceability of the building and the piled raft as well. Hence, the prediction of the building responses to the adjacent excavations is of utmost importance. This study used three-dimensional numerical modelling to capture the effects of twin excavations (final depth of each excavation, He=24 m) on a 20-storey building resting on (4×4) piled raft. Because the considered structure, pile foundation, and soil deposit are three-dimensional in nature, the adopted three-dimensional numerical modelling can provide a more realistic simulation to capture responses of the system. The hypoplastic constitutive model was used to capture soil behaviour. The concrete damaged plasticity (CDP) model was used to capture the cracking behaviour in the concrete beams, columns and piles. The computed results revealed that the first excavation- induced substantial differential settlement (i.e., tilting) in the adjacent high-rise building while second excavation caused the building tilt back with smaller rate. As a result, the building remains tilted towards the first excavation with final value of tilting of 0.28%. Consequently, the most severe tensile cracking damage at the bottom of two middle columns. At the end of twin excavations, the building load resisted by the raft reduced to half of that the load before the excavations. The reduced load transferred to the piles resulting in increment of the axial load along the entire length of piles.