• Title/Summary/Keyword: Finite fault

Search Result 214, Processing Time 0.028 seconds

Reliability Assessment of Long-Period Cable-Stayed Bridges on Near Fault Earthquake(NFE) (근거리지진에서 장주기사장교의 신뢰성평가)

  • Bang, Myung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.44-48
    • /
    • 2012
  • The seismic safety of long-period cable-stayed bridges is assessed by probabilistic finite element analysis and reliability analysis under NFE. The structural response of critical members of cable-stayed bridges is evaluated using the developed probabilistic analysis algorithm. In this study, the real earthquake recording(Chi-Chi Earthquake; 1997) was selected as the input NFE earthquake for investigating response characteristics. The probabilistic response and reliability index shows the different aspect comparing the result from FFE earthquake. Therefore, the probabilistic seismic safety assessment on NFE earthquakes should be performed for the exact evaluation of long-period cable-stayed bridges and the earthquake resistant design criteria should be complemented.

Demagnetization Diagnosis of Permanent Magnet Synchronous Motor Using Frequency Analysis at Standstill Condition

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.249-254
    • /
    • 2016
  • Recently, electric vehicles have got significant attention because it is more eco-friendly and efficient than internal combustion engine vehicles. Instead of an internal combustion engine, the electric vehicle has a motor for propulsion. The permanent magnet synchronous motor which has permanent magnet instead of field winding in the rotor has especially higher efficiency and power density than other types of motor. When the irreversible demagnetization is occurred, drivers are exposed to high risk of accident by the fault operation of motor. Therefore, the irreversible demagnetization of permanent magnet should be detected to reduce the risk of accident. In this study, the demagnetization diagnosis method based on the result of locked rotor test is proposed. Based on short measurement time, the proposed diagnosis method aims to detect the demagnetization fault when an electric vehicle is at a complete standstill. The proposed method is verified through the finite element analysis.

Fault Diagnosis of Rotor Bars in a Single Phase Induction Motor Monitoring Electromechanical Parameters (기전연성계 해석을 이용한 단상유도전동기의 회전자 결함진단에 관한 연구)

  • Park, S.J.;Chang, J.H.;Jang, G.H.;Lee, Y.B.;Kim, C.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.802-808
    • /
    • 2000
  • This paper characterizes the electromechanical parameters due to the fault of rotor bars in a squirrel cage induction motor. Simulation is performed to investigate how broken rotor bars have effect on them by solving the time-stepping finite element equation coupled with magnetic field equation, circuit equation and mechanical equation of motion. It shows that the asymmetry of magnetic flux due to the broken rotor bar introduces the beating phenomenon in time domain and the sideband frequencies in frequency spectra, respectively, to the stator current, torque, speed, magnetic force and vibration of a rotor. However, vibration of a rotor would be the most effective monitoring parameters to detect the faults of rotor bars.

  • PDF

Investigation of fault in the Kyungju Kaekok-ri area by 2-D Electrical Resistivity Survey (2차원 전기비저항 탐사를 이용한 경주 개곡리 지역의 단층조사)

  • Lee, Chi-Seop;Kim, Hee-Joon;Kong, Young-Sae;Lee, Jung-Mo;Chang, Tae-Woo
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.4
    • /
    • pp.124-132
    • /
    • 2001
  • Electrical resistivity survey has been conducted for delineating geological fault structure in Kaekok-ri near Kyungju. In general, electrical resistivity survey has an advantage of searching buried faults and its traces compared with other geophysical survey methods. Distribution of electrical conductivity in the ground is influenced by the ratio of pores, groundwater and clay minerals. These properties are evidenced indirectly to explain for weathering condition, faults and fracture Bones. Thus the electrical resistivity survey can be an effective method to find buried faults. We have carried out two dimensional (2-D) interpretation by means of smoothness-constrained least-squares and finite element method. Field data used in this paper was acquired at Kaekok-ri, Wuedong-eup, Kyungju-si, where is Ulsan Fault and is close to the region in which debatable quaternary fault traces were found recently. The dipole-dipole array resistivity survey which could show the 2-D subsurface electrical resistivity structure, was carried out in the area with three lines. The results showed good property of fault, fracture zone and fault traces which we estimated were congruous with the results. Through this study, 2-D electrical resistivity survey interpretation for fault is useful to apply.

  • PDF

Sequential Use of COMSOL Multiphysics® and PyLith for Poroelastic Modeling of Fluid Injection and Induced Earthquakes (COMSOL Multiphysics®와 PyLith의 순차 적용을 통한 지중 유체 주입과 유발지진 공탄성 수치 모사 기법 연구)

  • Jang, Chan-Hee;Kim, Hyun Na;So, Byung-Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.643-659
    • /
    • 2022
  • Geologic sequestration technologies such as CCS (carbon capture and storage), EGS (enhanced geothermal systems), and EOR (enhanced oil recovery) have been widely implemented in recent years, prompting evaluation of the mechanical stability of storage sites. As fluid injection can stimulate mechanical instability in storage layers by perturbing the stress state and pore pressure, poroelastic models considering various injection scenarios are required. In this study, we calculate the pore pressure, stress distribution, and vertical displacement along a surface using commercial finite element software (COMSOL); fault slips are subsequently simulated using PyLith, an open-source finite element software. The displacement fields, are obtained from PyLith is transferred back to COMSOL to determine changes in coseismic stresses and surface displacements. Our sequential use of COMSOL-PyLith-COMSOL for poroelastic modeling of fluid-injection and induced-earthquakes reveals large variations of pore pressure, vertical displacement, and Coulomb failure stress change during injection periods. On the other hand, the residual stress diffuses into the remote field after injection stops. This flow pattern suggests the necessity of numerical modeling and long-term monitoring, even after injection has stopped. We found that the time at which the Coulomb failure stress reaches the critical point greatly varies with the hydraulic and poroelastic properties (e.g., permeability and Biot-Willis coefficient) of the fault and injection layer. We suggest that an understanding of the detailed physical properties of the surrounding layer is important in selecting the injection site. Our numerical results showing the surface displacement and deviatoric stress distribution with different amounts of fault slip highlight the need to test more variable fault slip scenarios.

Analysis of Insulation Life Loss due to Fault Occurrence of TP Cable for HVDC Systems (고장 발생에 따른 HVDC 시스템용 TP 케이블의 절연체 수명 손실 분석)

  • Woo-Hee Jeong;Jae-In Lee;Seok-Ju Lee;Minh-Chau Dinh
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.55-66
    • /
    • 2024
  • In order to safely use thermoplastic (TP) cables in high-voltage direct current (HVDC) systems, it is necessary to analyze the life loss rate of the cable due to system fault that may occur during operation through various research and tests. In this paper, we analyzed the insulation life loss rate of TP cable according to the type of faults that may occur during HVDC system operation. Electric power due to fault was applied to the TP cable model, and the life loss rate of the insulator was analyzed by applying the Arrhenius-Inverse Power Model (IPM) based on the analysis results through the 2D finite element method. As a result of the analysis, the life loss rate of the insulator was highly influenced by the electric field strength, and the loss rate was highest inside the insulator when a fault occurred. These results can be used as important characteristics in the early design stage for commercialization of TP cables.

The Study for Performance Analysis of Software Reliability Model using Fault Detection Rate based on Logarithmic and Exponential Type (로그 및 지수형 결함 발생률에 따른 소프트웨어 신뢰성 모형에 관한 신뢰도 성능분석 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.3
    • /
    • pp.306-311
    • /
    • 2016
  • Software reliability in the software development process is an important issue. Infinite failure NHPP software reliability models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, reliability software cost model considering logarithmic and exponential fault detection rate based on observations from the process of software product testing was studied. Adding new fault probability using the Goel-Okumoto model that is widely used in the field of reliability problems presented. When correcting or modifying the software, finite failure non-homogeneous Poisson process model. For analysis of software reliability model considering the time-dependent fault detection rate, the parameters estimation using maximum likelihood estimation of inter-failure time data was made. The logarithmic and exponential fault detection model is also efficient in terms of reliability because it (the coefficient of determination is 80% or more) in the field of the conventional model can be used as an alternative could be confirmed. From this paper, the software developers have to consider life distribution by prior knowledge of the software to identify failure modes which can be able to help.

Fault detections in ring structures using vibration modes (진동모드를 이용한 링 구조물의 결함 탐지)

  • Kim, Seock-Hyun;Jang, Ho-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1925-1932
    • /
    • 2000
  • Damage detection methods using vibration modes are investigated on ring structures and. modal behavior of the slightly asymmetric rings is examined. Mode shapes changes, MSER(modal strain energy ratio) and MCR(modal curvature ratio) are applied to identify the locations of faults or damages. Parameters are calculated and compared by finite element analysis on rings with designed local damages. Damages are modeled as reduced stiffness in the analysis. The results show MSER and MCR can be proper factors to detect local damages in ring structures.

  • PDF

Parameter Estimation of Quick Response Excitation type Superconducting Synchronous Generator by F.E.M (유한 요소법을 이용한 속응여자방식 초전도 발전기의 정수 산정)

  • Kim, J.C.;Hahn, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.600-602
    • /
    • 2000
  • This paper deals with finite element analysis of 2GVA superconducting generator which has slitted electrothermal shield in d-axis. Open emf voltage is calculated and three phase fault is considered to Predict the generator parameters by F.E.M. Results show that quick response excitation could be applied to superconducting generator with slitted electrothermal shield.

  • PDF

A Study on Insuring the Full Reliability of Finite State Machine (유한상태머신의 완벽한 안정성 보장에 관한 연구)

  • Yang Sun-Woong;Kim Moon-Joon;Park Jae-Heung;Chang Hoon
    • Journal of Internet Computing and Services
    • /
    • v.4 no.3
    • /
    • pp.31-37
    • /
    • 2003
  • In this paper, an efficient non-scan design-for-testability (DFT) method for finite state machine(FSM) is proposed. The proposed method always guarantees short test pattern generation time and complete fault efficiency. It has a lower area overhead than full-scan and other non-scan DFT methods and enables to apply test patterns at-speed. The efficiency of the proposed method is demonstrated using well-known MCNC'91 FSM benchmark circuits.

  • PDF