DOI QR코드

DOI QR Code

Analysis of Insulation Life Loss due to Fault Occurrence of TP Cable for HVDC Systems

고장 발생에 따른 HVDC 시스템용 TP 케이블의 절연체 수명 손실 분석

  • 정우희 (국립창원대학교 전기공학과) ;
  • 이재인 (국립창원대학교 메카트로닉스연구원) ;
  • 이석주 (국립창원대학교 메카트로닉스연구원) ;
  • 딘민차우 (국립창원대학교 메카트로닉스연구원)
  • Received : 2024.05.14
  • Accepted : 2024.06.27
  • Published : 2024.08.30

Abstract

In order to safely use thermoplastic (TP) cables in high-voltage direct current (HVDC) systems, it is necessary to analyze the life loss rate of the cable due to system fault that may occur during operation through various research and tests. In this paper, we analyzed the insulation life loss rate of TP cable according to the type of faults that may occur during HVDC system operation. Electric power due to fault was applied to the TP cable model, and the life loss rate of the insulator was analyzed by applying the Arrhenius-Inverse Power Model (IPM) based on the analysis results through the 2D finite element method. As a result of the analysis, the life loss rate of the insulator was highly influenced by the electric field strength, and the loss rate was highest inside the insulator when a fault occurred. These results can be used as important characteristics in the early design stage for commercialization of TP cables.

HVDC (high-voltage direct current) 시스템에 TP (thermoplastic) 케이블을 안전하게 사용하기 위해서는 다양한 연구와 테스트를 통해 운전 중 발생할 수 있는 시스템 고장으로 인한 케이블의 수명 손실률 분석이 필요하다. 본 논문에서는 HVDC 시스템 운영 중에 발생할 수 있는 고장 유형에 따른 TP 케이블의 절연체 수명 손실률을 분석하였다. TP 케이블 모델에 고장으로 인한 전력을 인가하고, 2D 유한요소법을 통한 분석 결과를 바탕으로 Arrhenius-IPM (Inverse Power Model)을 적용하여 절연체의 수명 손실률을 분석하였다. 분석결과 절연체 수명 손실률은 전기장 세기의 영향이 높았으며, 고장 발생 시 절연체 내부 측에서 손실률이 가장 높았다. 이러한 결과는 TP 케이블 상용화를 위한 초기 설계 단계에서 중요한 특성으로 사용될 수 있다.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (RS-2023-00246086)

References

  1. Choudhary, M., Shafiq, M., Kiitam, I., Hussain, A., Palu, I. and Taklaja, P. (2022). A Review of Aging Models for Electrical Insulation in Power Cables, Energies, 15(9), 3408, https://doi.org/10.3390/en15093408
  2. Chaudhary, S. K., Teodorescu, R., Rodriguez, P. and Kjaer, P. C. (2009). Chopper Controlled Resistors in VSC-HVDC Transmission for WPP with Full-Scale Converters, In 2009 IEEE PES/ IAS Conference on Sustainable Alternative Energy, https://doi.org/10.1109/SAE.2009.5534882
  3. Conseil International des Grands Reseaux Electriques. Comite d'Etudes B1. (2012). Recommendations for Testing DC Extruded Cable Systems for Power Transmission at a Rated Voltage up to 500 kV, CIGRE.
  4. Goertz, M., Hirsching, C., Wenig, S., Schafer, K. M., Beckler, S., Reisbeck, J., Kahl, M., Suriyah, M. and Leibfried, T. (2019). Analysis of Overvoltage Levels in the Rigid Bipolar MMC-HVDC Configuration, https://doi.org/10.1049/cp.2019.0025
  5. Green, C. D., Vaughan, A. S., Stevens, G. C., Pye, A., Sutton, S. J., Geussens, T. and Fairhurst, M. J. (2015). Thermoplastic Cable Insulation Comprising a Blend of Isotactic Polypropylene and a Propylene-Ethylene Copolymer, IEEE Transactions on Dielectrics and Electrical Insulation, 22(2), 639-648. http://doi.org/10.17775/CSEEJPES.2021.00850
  6. IEC 60216-1. (2013). Electrical Insulating Materials - Thermal Endurance Properties - P art 1: Ageing Procedures and Evaluation of Test Results.
  7. Jardini, J. A., Vasquez-Arnez, R. L., Bassini, M. T., Horita, M. A., Saiki, G. Y. and Cavalheiro, M. R. (2015). Overvoltage Assessment of Point-to-Point VSC-Based HVDC Systems, Przeglad Elektrotechniczny, 91(8), 105-112. http://doi.org/10.15199/48.2015.08.26
  8. Jeong, W. H. (2024). Analysis of Insulation Life Loss according to TP Cable Fault Patterns for HVDC Systems Application, Thesis, Graduate School of Changwon National University, Changwon, Korea.
  9. Kim, D. K., Lee, S. H., Kwon, T. H., Kwon, I. S., Han, D. H., Park, H., Han, S. W., Lee, D. H. and Yu, S. (2023). Study on High-Temperature and High-Voltage Insulation Characteristics of Polypropylene Blend with Highly Packed Elastomeric Domains for Power Cable Applications, Polymer Testing, 120, 107942. https://doi.org/10.1016/j.polymertesting.2023.107942.
  10. Lee, J. I., Jeong, W. H., Dinh, M. C., Yu, I. K. and Park, M. (2022). Comparative Analysis of XLPE and Thermoplastic Insulation-Based HVDC Power Cables, Energies, 16(1), 167. https://doi.org/10.3390/en16010167
  11. Lee, J. Y., Lee, S. J. and Park, M. (2020). Modelling and Transient Analysis of a 3-Phase Multi-Layer HTS Coaxial Cable using PSCAD/EMTDC, Journal of Korea Society of Industrial Information Systems, 25(1), 25-30. https://doi.org/jksiis.2020.25.1.025 https://doi.org/10.9723/JKSIIS.2020.25.1.025
  12. Lee, S. J. (2019). Characteristic Analysis of Superconducting Power Cable for High Capacity Power Transmission, Journal of Korea Society of Industrial Information Systems, 24(2), 57-63. https://doi.org/10.9723/jksiis.2019.24.2.057
  13. Li, G., Liang, J., Joseph, T., An, T., Lu, J., Szechtman, M., Andersen, B. and Zhuang, Q. (2019). Feasibility and Reliability Analysis of LCC DC Grids and LCC/VSC Hybrid DC Grids, IEEE Access, 7, 22445-22456. https://doi.org/10.1109/ACCESS.2019.2898387
  14. Mazzanti, G. and Marzinotto, M. (2013). Extruded Cables for High-Voltage Direct-Current Transmission: Advances in Research and Development, Piscataway, Wiley-IEEE Press.
  15. Mazzanti, G. (2018). Including the Calculation of Transient Electric Field in the Life Estimation of HVDC Cables Subjected to Load Cycles, IEEE Electrical Insulation Magazine, 34(3), 27-37. http://doi.org/10.1109/MEI.2018.8345358
  16. Murata, Y., Sakamaki, M., Abe, K., Inoue, Y., Mashio, S., Kashiyama, S., Matsunaga, O., IGI, T., Watanabe, M., ASAI, S. and Katakai, S. (2013). Development of High Voltage DC-XLPE Cable System, SEI Tech. Rev, 101, 55-62.
  17. Susakova, T. V., Evseeva, A. M. and Chesnokova, I. A. (2017). Analysis and Prevention of Accident-Caused Faults in Power Cable Lines, MATEC Web of Conferences, 110, 01077. https://doi.org/10.1051/matecconf/201711001077
  18. Tomaszewska, K., Kaluzna-Czaplinska, J. and Jozwiak, W. (2010). Thermal and Thermo-Catalytic Degradation of Polyolefins as a Simple and Efficient Method of Landfill Clearing, Polish Journal of Chemical Technology, 12(3), 50-57. https://doi.org/10.2478/v10026-010-0034-x
  19. Wang, Y., Lv, Z., Wang, X., Wu, K., Zhang, C., Li, W. and Dissado, L. A. (2016). Estimating the Inverse Power Law Aging Exponent for the DC Aging of XLPE and Its Nanocomposites at Different Temperatures, IEEE Transactions on Dielectrics and Electrical Insulation, 23(6), 3504-3513. https://doi.org/10.1109/TDEI.2016.005889
  20. Zhou, X., Giangrande, P., Ji, Y., Zhao, W., Ijaz, S. and Galea, M. (2024). Insulation for Rotating Low-Voltage Electrical Machines: Degradation, Lifetime Modeling, and Accelerated Aging Tests. Energies, 17(9), 1987. https:// doi.org/10.3390/en17091987