• Title/Summary/Keyword: Finite element program

Search Result 2,125, Processing Time 0.026 seconds

FE Analysis for 1/3-scaled RC Building Structure under Biaxial Earthquake Loading

  • Lee, Joo-Beom;Rhee, In-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.567-568
    • /
    • 2009
  • The CAMUS 2000-1 experimental program were performed in France to investigate of the 1/3-scaled reinforced concrete bearing walls behavior on the shaking table under biaxial earthquake loading. The nonlinear 3D finite element analysis of push over test and linear dynamic analysis under biaxial earthquake loading are investigated with the concrete damaged plasticity model using ABAQUS.

  • PDF

Structural analysis of satellite bus (위성체본체의 구조해석)

  • 이장무;김승조;김기욱;유정열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.71-75
    • /
    • 1989
  • Structural analysis of a satellite bus is carried out by using a finite element program NISA II. It is assumed that the bus is composed of bars, plates and shells made of CFRP composite materials and aluminum alloys. Displacements and stresses are calculated as static analysis under accelerated motion and frequencies and mode shapes are computed as dynamic analysis.

  • PDF

Finite Element Analysis of Reinforced Earth Wall Behavior (보강토 옹벽의 거동에 관한 유한요소 해석)

  • 최인석;장연수;조광철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.805-812
    • /
    • 2003
  • The purpose of this study is to evaluate the behavior of a reinforced earth wall by modeling the properties of the interface between soil and reinforced elements as well as the non-linear stress-strain characteristics of soil. The effect of lateral earth pressures induced during construction is also included in the analyses. The interface element used to evaluate the relative movement of the interface between soil/reinforcement and soil/wall- facing has a zero thickness and essentially consists of normal and shear springs. The behavior of soil element is calculated based on the hyperbolic model. The computer program SSCOMPPC which includes the interface element, hyperbolic model and bi-linear model is applied in this study. From the analyses, it is showed that the locus of maximum tension were closed to the hi-linear failure line of theoretical analyses. The lateral displacement of SSCOMPPC is larger than that of the FLAC which adopts the elastic model. This means the analysis which is adopted the hyperbolic model and interface element induced more larger displacement.

  • PDF

Static Analysis of Continuous Fiber-Reinforced Laminated Beams Based on Hybrid-Mixed Formulation (혼합 정식화를 이용한 섬유 강화 적층보의 변형해석)

  • Kim, J.G.;Lee, J.K.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.47-52
    • /
    • 2011
  • In this study, an accurate 2-noded hybrid-mixed element for continuous fiber-reinforced laminated beams is newly proposed. The present element including the effect of shear deformation is based on Hellinger-Reissner variational principle, and introduces additional consistent node less degrees for displacement field interpolation in order to enhance the numerical performance. The micromechanical and lamination theory are employed in the finite element description to consider the effects of the laminate stacking sequences, material orthotropy, and fiber volume fraction, etc. The element stiffness matrix can be explicitly derived through the stationary condition and static condensation using Mathematica program. Several numerical examples confirm the accuracy of the present hybrid-mixed element and also show in detail the effects of the continuous fiber volume fraction, stacking sequences and boundary condition on the bending behavior of laminated beams.

The Finite Element Analysis of Foundation Layer by Introducing Interface Element (접합요소를 도입한 기초지반의 유한요소해석(지반공학))

  • 정진섭;이대재;봉기영
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.425-430
    • /
    • 2000
  • In the analysis of deformation in which the stiffness is greatly different between the adjacent materials, the desired results have been obtained by using the interface element method compared with those secured by the conventional method of the concept of continua. This study deals with the deformation analysis of soft foundation by the introduction of interface element. The physical conditions of interface element are divided into three categories by Mohr-Coulomb failure criterion ie. sliding, separation, and contact. Finally the accuracy of the program proposed in this paper is proved highly accurate by performing the comparison of the theoretical values numerical results of a model element with simplified boundary conditions.

  • PDF

Modified Lysmer's analog model for two dimensional mat settlements under vertically uniform load

  • Chang, Der-Wen;Hung, Ming-He;Jeong, Sang-Seom
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.221-231
    • /
    • 2021
  • A two dimensional model of linearly elastic soil spring used for the settlement analysis of the flexible mat foundation is suggested in this study. The spring constants of the soils underneath the foundation were modeled assuming uniformly vertical load applied onto the foundation. The soil spring constants were back calculated using the three-dimensional finite element analysis with Midas GTS NX program. Variation of the soil spring constants was modeled as a two-dimensional polynomial function in terms of the normalized spatial distances between the center of foundation and the analytical points. The Lysmer's analog spring for soils underneath the rigid foundation was adopted and calibrated for the flexible foundation. For validations, the newly proposed soil spring model was incorporated into a two dimensional finite difference analysis for a square mat foundation at the surface of an elastic half-space consisting of soft clays. Comparative study was made for elastic soils where the shear wave velocity is 120~180 m/s and the Poisson's ratio varies at 0.3~0.5. The resulting foundation settlements from the two dimensional finite difference analysis with the proposed soil springs were found in good agreement with those obtained directly from three dimensional finite element analyses. Details of the applications and limitations of the modified Lysmer's analog springs were discussed in this study.

Finite Element Simulation of Elastic Waves for Detecting Defects and Deteriorations in Underwater Steel Plates (수중강판의 결함 및 열화 검출을 위한 탄성파 유한요소 시뮬레이션)

  • Woo, Jinho;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.61-66
    • /
    • 2013
  • This paper presents the results of finite element simulations of elastic wave propagation in an underwater steel plate and the verification of a proposed method utilizing elastic wave-based damage detection. For the simulation and verification, we carried out the following procedures. First, three-dimensional finite element models were constructed using a general purpose finite element program. Second, two types of damages (mechanical defects and deteriorations) were applied to the underwater steel plate and three parameters (defect location, defect width, and depth) were considered to adjust the severity of the applied damages. Third, elastic waves were generated using the oblique incident method with a Gaussian tone burst, and the response signals were obtained at the receiving point for each defect or deterioration case. In addition, the received time domain signals were analyzed, particularly by measuring the magnitudes of the maximum amplitudes. Finally, the presence and severity of each type of damage were identified by the decreasing ratios of the maximum amplitudes. The results showed that the received signals for the models had the same global pattern with minor changes in the amplitudes and phases, and the decreasing ratio generally increased as the damage area increased. In addition, we found that the defect depth was more critical than the width in the decrease of the amplitude. This mainly occurred because the layout of the depth interfered with the elastic wave propagation in a more severe manner than the layout of the width. An inverse analysis showed that the proposed method is applicable for detecting mechanical defects and quantifying their severity.

Review of Transverse Steel Design in Continuously Reinforced Concrete Pavement through Finite Element Analysis (유한요소해석을 이용한 연속철근콘크리트 포장의 횡방향 철근 설계 검토)

  • Choi, Pangil;Ha, Soojun;Chon, Beom Jun;Kil, Yong Su;Won, Moon-Cheol
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.25-34
    • /
    • 2014
  • PURPOSES : This paper numerically evaluates the contribution of transverse steel to the structural behavior of continuously reinforced concrete pavements to understand the role of transverse steel. METHODS : Two-lane continuously reinforced concrete pavements with and without transverse steel were analyzed through finite element analysis with the aid of commercial finite element analysis program DIANA; the difference in their structural behavior such as deflection, joint opening, and stress distribution was then evaluated. Twenty-node brick elements and three-node beam elements were used to model concrete and steel, respectively. Sub-layers were modeled with horizontal and vertical tensionless spring elements. The interactions between steel and surrounding concrete were considered by connecting their nodes with three orthogonal spring elements. Both wheel loading and environmental loading in addition to self-weight were considered. RESULTS : The use of transverse steel in continuously reinforced concrete pavements does not have significant effects on the structural behavior. The surface deflections change very little with the use of transverse steel. The joint opening decreases when transverse steel is used but the reduction is quite small. The transverse concrete stress, rather, increases when transverse steel is used due to the restraint exerted by the steel but the increase is quite small as well. CONCLUSIONS : The main role of transverse steel in continuously reinforced concrete pavements is supporting longitudinal steel and/or controlling unexpected longitudinal cracks rather than enhancing the structural capacity.

Transient Dynamic Stress Analysis of Transversely Isotropic Cylinders Subject to Longitudinal Impact (충격압축하중을 받는 횡등방성 중실축의 과도 동적해석)

  • Oh, Guen;Sim, Woo-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.521-532
    • /
    • 2007
  • Elastic wave propagations in the semi-infinite transversely isotropic cylinder under various kinds of longitudinal impact loads are analyzed using the axisymmetric finite element method and Houbolt time-integration scheme. For which the finite element program is newly constructed and verified through the comparison of present numerical results with those by other researchers. E-type glass-epoxy composite cylinders with different fiber volume fractions are adopted and studied in detail with dynamic responses of the isotropic cylinder. Three dimensional wave motions are given in graphic form to show the realistic view of the wave propagation. Nondimensionalized dynamic characteristic variables which relate the size of finite element mesh, the time step, and the wave speed are presented for obtaining accurate and stable numerical results.