• 제목/요약/키워드: Finite element program

검색결과 2,114건 처리시간 0.029초

동일 평면상에서 연성된 Mindlin 판 구조물의 에너지흐름유한요소해석 (Energy Flow Finite Element Analysis(EFFEA) of Coplanar Coupled Mindlin Plates)

  • 박영호
    • 대한조선학회논문집
    • /
    • 제53권4호
    • /
    • pp.307-314
    • /
    • 2016
  • Energy flow analysis(EFA) is a representative method that can predict the statistical energetics of structures at high frequencies. Generally, as the frequency increases, the shear distortion and rotatory inertia effects in the out-of-plane motion of beams or plates become important. Therefore, to predict the out-of-plane energetics of coupled structures in the high frequency range, the energy flow analyses of Timoshenko beam and Mindlin plate are required. Unlike the energy flow model of Kirchhoff plate, the energy flow model of Mindlin plate is composed of three kinds of energy governing equations(out-of-plane shear wave, bending dominant flexural wave, and shear dominant flexural wave). This paper performed the energy flow finite element analysis(EFFEA) of coplanar coupled Mindlin plates. For EFFEA of coplanar coupled Mindlin plates, the energy flow finite element formulation of out-of-plane energetics in the Mindlin plate was performed. The general EFFEA program was implemented by MATLAB® language. For the verification of EFFEA of Mindlin plate, the various numerical applications were done successfully.

경계요소법과 유한요소법에 의한 흡음판의 소음저감에 관한 다영역 연성해석 (Multi-Region Structural-Acoustic Coupling Analysis on Noise Reduction of Layered Structures using Finite Element and Boundary Element Technique)

  • 주현돈;서원진;이시복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.309-313
    • /
    • 2000
  • A structural-acoustic coupling problem involving fluid in a cavity divided with flexible walls and porous materials is investigated in this paper. In many practical problems, the use of finite elements to discretize the fluid region leads to large stiffness and mass matrices. But, since the acoustic boundary element discretization requires to put elements only on the surface of structure, the size of matrices is reduced considerably. Here, we developed a numerical analysis program for the structural-acoustic coupling problems of the multi-region cavity, using boundary elements for the fluid regions and finite elements for the structure. By considering sound transmission through layered systems placed in a cavity, the accuracy of the coupled acoustical-structural finite element model has been verified by comparing its transmission loss predictions with analytical sloutions. Example problems are included to investigate the characteristics of the multi-region structural-acoustic coupling system with porous material.

  • PDF

탄소성 유한요소법에 의한 드로우비드 성형 해석 (Numerical Simulation of Drawbead Formation in a Binder Wrap Process by an elasto-Plastic Finite Element Method)

  • 최태훈;허훈;이장희;박춘달
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 춘계학술대회논문집
    • /
    • pp.196-202
    • /
    • 1995
  • Drawbead formulation is the first process together with a binder wrap process in a sheet metal forming process. The purpose of a drawbead is to control the flow of the metal into the die in panel press forming. To simulate the drawbead formation process, an elasto-plastic finite element formulation is derived from the equilibrium equation an drelated boundary conditions considering the proper contact conditons. The developed finite element program is applied to drawbead formation in the plane strain condition. The simulation of drawbead formation produces the distribution fo stress and strain along the bead and the resultant elongation of the sheet in the cavity region with respect to various cavity dimensions of the sheet as well as the punch force of a drawbead and the amount of draw-in with respect to the stroke fo a drawbead. The numerical resutls provides the fundamental information as a boundary condition to analyze the complex binder wrap phenomena and panel press forming in simple way.

  • PDF

복합체에 대한 연속체 방정식 및 유한요소 프로그램의 개발 (Development of Continuum Equations and Finite Element Method Program for Composite Systems)

  • 임종균;박문호
    • 대한토목학회논문집
    • /
    • 제8권2호
    • /
    • pp.155-166
    • /
    • 1988
  • 본 연구는 복합체의 단부영향을 고려한 등각균등질, 이방성의 모델개발과 이에따른 유한요소해석 프로그램 개발에 중점을 두었다. 복합체는 2차원의 수평층을 가지며 선형, 탄성, 작은변형에 제한을 두었다. 본 연구에서 개발된 등가 균등질의 이론은 복합체의 전반적인 거동을 포함시킴은 물론 층과 수직인 경계면과 그 부근에 형성되는 단부의 영향과 층의 경계면에 생기는 응력집중 현상을 나타낼 수 있게 하였다. 이론개발에 있어 1차변수는 $C_0$연속의 유한요소 근사치를 가지도록 하였으며 이를위해 최고 1차의 미분치가 변형에너지에 나타나도록 변수를 택하였다. 결과적으로 유한요소해석은 매우 간단하고 경제적이었으며 이들의 정당성과 정확도를 입증하기위하여 여러하중 조건하의 복합체를 풀이하였다.

  • PDF

원자로 노심 쉬라우드의 조사유기응력부식균열 민감도 예비 분석 (Preliminary Analysis on IASCC Sensitivity of Core Shroud in Reactor Pressure Vessel)

  • 김종성;박창제
    • 한국압력기기공학회 논문집
    • /
    • 제15권2호
    • /
    • pp.58-63
    • /
    • 2019
  • This paper presents preliminary analysis and results on IASCC sensitivity of a core shroud in the reactor pressure vessel. First, neutron irradiation flux distribution of the reactor internals was calculated by using the Monte Carlo simulation code, MCNP6.1 and the nuclear data library, ENDF/B-VII.1. Second, based on the neutron irradiation flux distribution, temperature and stress distributions of the core shroud during normal operation were determined by performing finite element analysis using the commercial finite element analysis program, ABAQUS, considering irradiation aging-related degradation mechanisms. Last, IASCC sensitivity of the core shroud was assessed by using the IASCC sensitivity definition of EPRI MRP-211 and the finite element analysis results. As a result of the preliminary analysis, it was found that the point at which the maximum IASCC sensitivity is derived varies over operating time, initially moving from the shroud plate located in the center of the core to the top shroud plate-ring connection brace over operating time. In addition, it was concluded that IASCC will not occur on the core shroud even after 60 years of operation (40EFPYs) because the maximum IASCC sensitivity is less than 0.5.

정적 외연적 유한요소법을 이용한 비드 펀치 행정거리가 드로우비드 공정에 미치는 영향에 관한 연구 (A Study on the Influence of the Punch Stroke of Bead on the Draw-bead process by using Static-explicit Finite Element Method)

  • 정동원
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.72-78
    • /
    • 2001
  • The bead is used to provide properly restraining force in the sheet metal forming process. This bead process includes bending and geometrical non-linearity, and affects the state of binderwrap. Therefore, the analysis of bead process is very important to obtain the desired formability. In this paper, the research about the influence of the punch stroke of bead on the draw-bead process was conducted. Results from the analysis will give useful information to the effective tool design of blank forming process. To analyze the bead process, and elasto-plastic finite element formulation is constructed from the equilibrium equation and the considered boundary conditions involved a proper contact condition. The static-explicit finite element method as a numerical method for the analysis was applied to the analysis program code. It was found that this method could solve too much computation time and convergence problem owing to high non-linearity of bead forming process.

  • PDF

Nonlinear finite element analysis of reinforced concrete corbels at both deterministic and probabilistic levels

  • Strauss, Alfred;Mordini, Andrea;Bergmeister, Konrad
    • Computers and Concrete
    • /
    • 제3권2_3호
    • /
    • pp.123-144
    • /
    • 2006
  • Reinforced concrete corbels are structural elements widely used in practical engineering. The complex response of these elements is described in design codes in a simplified manner. These formulations are not sufficient to show the real behavior, which, however, is an essential prerequisite for the manufacturing of numerous elements. Therefore, a deterministic and probabilistic study has been performed, which is described in this contribution. Real complex structures have been modeled by means of the finite element method supported primarily by experimental works. The main objective of this study was the detection of uncertainties effects and safety margins not captured by traditional codes. This aim could be fulfilled by statistical considerations applied to the investigated structures. The probabilistic study is based on advanced Monte Carlo simulation techniques and sophisticated nonlinear finite element formulations.

Examination of analytical and finite element solutions regarding contact of a functionally graded layer

  • Yaylaci, Murat;Adiyaman, Gokhan;Oner, Erdal;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.325-336
    • /
    • 2020
  • In this study, the continuous and discontinuous contact problems of functionally graded (FG) layer resting on a rigid foundation were considered. The top of the FG layer was loaded by a distributed load. It was assumed that the shear modulus and the density of the layer varied according to exponential functions along the depth whereas the the Poisson ratio remained constant. The problem first was solved analytically and the results were verified with the ones obtained from finite element (FE) solution. In analytical solution, the stress and displacement components for FG layer were obtained by the help of Fourier integral transform. Critical load expression and integral equation for continuous and discontinuous contact, respectively, using corresponding boundary conditions in each case. The finite element solution of the problem was carried out using ANSYS software program. In continuous contact case, initial separation distance and contact stresses along the contact surface between the FG layer and the rigid foundation were examined. Separation distances and contact stresses were obtained in case of discontinuous contact. The effect of material properties and loading were investigated using both analytical and FE solutions. It was shown that obtained results were compatible with each other.

관성효과가 고려된 강소성 유한요소법을 이용한 고속변형해석 (High-Velocity Deformation Analysis Using the Rigid-Plastic Finite Elemement Method Considering Inertia Effect)

  • 유요한;박근;양동열
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1562-1572
    • /
    • 1996
  • The rigid-plastic finite element formulation including the inertia force is derived and then the rigid-plastic finite elemnt program considering the inertia effect is developed. In order to consider the strain hardening, strain rate hardening and thermal softening effects which are frequentrly observed in high-velocity deformation phenomena, the Johnson-Cook constitutive odel is applied. The developed program is used to simulate two high-velocity deformation problemss ; rod impact test and hdigh-velocity compression precess. As a result of rod impact test simulation, it is found that the siulated result has a good agreement with the experimental observation. Through the high-velocity compression process simulation. it is also found that the accuracy of the simulated results is dependent upon the time increment size and mesh size.

유한요소분석법과 반응표면분석법을 이용한 장조림 식품의 가열온도 예측 (Prediction of Heating Temperature of Jangjorim Food by Using Finite Element Method and Response Surface Methodology)

  • 신해헌;조원일
    • 한국식품영양학회지
    • /
    • 제17권1호
    • /
    • pp.32-40
    • /
    • 2004
  • 간장으로 채워진 실린더 형태의 장조림 제품의 가열살균 시 온도변화를 유한요소분석법(finite element method)을 이용하여 예측하기 위하여 상업적 NISA (Numerical Integrated Elements for System Analysis, EMRC, USA)프로그램을 이용하여 실시하였다. 장조림 식품에서의 열전달은 냉점이 기하학적 중심에 위치하지 않고 y축으로 26.9 mm 뒤쪽에 위치하였다. 이는 간장소스의 비열이 장조림보다 20% 이상 큰 값이기 때문으로, 사용된 재료의 열전달계수에 의해서 냉점의 위치가 다르게 나타났다. 장조림 식품의 가열살균 시 열전달계수의 영향을 검토하기 위하여 온도와 치사율 오차를 종속변수로 하여 간장소스의 열전도계수, 장조림의 열전도계수, 열전달계수를 독립변수로 한 반응표면분석법을 행한 결과 장조림의 열전도계수가 p<0.01로 매우 높은 상관관계를 보이며, 치사율 오차를 최소로 하는 최적화값을 얻을 수 있었다.