• Title/Summary/Keyword: Finite element method Time difference method

Search Result 148, Processing Time 0.025 seconds

Design and Characteristic Analysis of Vaccum Pump Using Moving Magnet type Linear Oscillatory Actuator (가동 영구자석형 리니어 진동 액츄에이터를 이용한 진공 펌프의 설계 및 특성해석)

  • Cho, Sung-Ho;Kim, Duk-Hyun;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.61-63
    • /
    • 2002
  • This paper deals with the design of vaccum pump using moving magnet type linear oscillaory actuator based on the design procedure and the characteristic analysis. To improve the starting characteristic, the optimum spring constant is detected and redesigned. The parameter was calculated by Finite Element Method(FEM). In order to dynamic characteristic analysis. Time difference method with voltage and kinetic equation is used.

  • PDF

Finite Element Analysis of Creep Crack Growth Behavior Including Primary Creep Rate (1차 크리프 속도를 고려한 크리프 균열 진전의 유한요소 해석)

  • Choi, Hyeon-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1120-1128
    • /
    • 1999
  • An elastic-viscoplastic finite element analysis is performed to investigate detailed growth behavior of creep cracks and the numerical results are compared with experimental results. In Cr-Mo steel stress fields obtained from the crack growth method by mesh translation were compared with both cases that the secondary creep rate is only used as creep material property and the primary creep rate is included. Analytical stress fields, Riedel-Rice(RR) field, Hart-Hui-Riedel(HR) field and Prime(named in here) field, and the results obtained by numerical method were evaluated in details. Time vs. stress at crack tip was showed and crack tip stress fields were plotted. These results were compared with analytical stress fields. There is no difference of stress distribution at remote region between the case of 1st creep rate+2nd creep rate and the case of 2nd creep rate only. In case of slow velocity of crack growth, the effect of 1st creep rate is larger than the one of fast crack growth rate. Stress fields at crack tip region we, in order, Prime field, HR field and RR field from crack tip.

Two-Dimensional Resistivity Modeling by Finite Element Method (유한요소법에 의한 2차원 비저항 모델링)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.19 no.4
    • /
    • pp.283-292
    • /
    • 1986
  • Finite element method with linear triangular and bilinear rectangular elements is applied to solve the three-dimensional potential distribution due to a point source of current located in or on the surface of the earth containing arbitrary two-dimensional resistivity distribution. The modeling technique developed in this paper is flexible to model conductive inhomogeneity and surface topographies, and more accurate to evaluate surface potentials than the conventional techniques using finite difference method. Since it is possible to reduce nodal points with acceptable accuracy, this modeling technique is very efficient and economic in terms of execution time and core space. A few geologic structures adequate to demonstrate above features are simulated in this paper.

  • PDF

Commutation Modeling and Characteristic Analysis of DC Motor using Circuit Parameters (회로정수를 이용한 직류전동기의 정류회로 모델링 및 특성 해석)

  • Kim, Young Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.57-62
    • /
    • 2013
  • Because of high torque and easiness of speed control, Direct Current(DC) motors have been used for a long time. But, its applications are limited in circumstance and performance, since they contained brush and commutator. The commutation characteristic gives effect to life and performance of the DC motor. Naturally, the commutation characteristic analysis is strongly required. In this paper, With the result of finite element analysis, The inductance is calculated each rotor position and applied to the voltage equations coupled with commutation equation. Also, contact resistances of brush/commutator assembly are considered using contact area and brush width converted with commutator segments. The time derivative term in the differential equation is solved in time difference method. This algorithm was applied to 2-pole shunt DC motor. We considered commutation characteristic by changing contact resistance between brush and commutator segment.

Study on the Thermal Analysis of Extra-High Voltage OF Cable Accessories using Finite Element Method (유한요소법에 의한 초고압 OF 케이블 접속재의 주도해석에 관한 연구)

  • Lee, Jong-Bum;Kang, Dong-Sik;Kang, Do-Hyun;Lee, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.211-215
    • /
    • 1989
  • This paper presents the thermal analysis of EHV OF cable accessories using FEM. The governing equation about the temperature in the cable accessories is induced by the energy balance equation. Since the temperature distribution is a function of space and time, the weighted residual method is adopted for FEM formulation. The difference approximation is used to treat the time differential term in the element equation. Automatic mesh generation which save time and labor is introduced for the data input process. It will be expected that the following thermal analysis result will be very useful to cable accessories design.

  • PDF

Nonlinear time-varying analysis algorithms for modeling the behavior of complex rigid long-span steel structures during construction processes

  • Tian, Li-Min;Hao, Ji-Ping
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1197-1214
    • /
    • 2015
  • There is a great difference in mechanical behavior between design model one-time loading and step-by-step construction process. This paper presents practical computational methods for simulating the structural behavior of long-span rigid steel structures during construction processes. It introduces the positioning principle of node rectification for installation which is especially suitable for rigid long-span steel structures. Novel improved nonlinear analytical methods, known as element birth and death of node rectification, are introduced based on several calculating methods, as well as a forward iteration of node rectification method. These methods proposed in this paper can solve the problem of element's 'floating' and can be easily incorporated in commercial finite element software. These proposed methods were eventually implemented in the computer simulation and analysis of the main stadium for the Universiade Sports Center during the construction process. The optimum construction scheme of the structure is determined by the improved algorithm and the computational results matched well with the measured values in the project, thus indicating that the novel nonlinear time-varying analysis approach is effective construction simulation of complex rigid long-span steel structures and provides useful reference for future design and construction.

Design Sensitivity Analysis for the Sheet Metal Forming Process with an Elasto-plastic Finite Element Analysis and a Direct Differentiation Approach (탄소성 유한요소법과 직접미분법물 이용한 박판성형공정에서의 설계민감도 해석)

  • Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.93-96
    • /
    • 2001
  • Design sensitivity is calculated in the sheet metal forming process with an elasto-plastic finite element analysis and a direct differentiation method The sensitivity analysis is concerned with the time integration the constitutive relation considering planar anisotropy, shell elements and the contact scheme. The present result is compared with the result obtained with the finite difference approach in deep drawing processes. The obtained sensitivity information is applied to the simple optimization process for the sheet metal forming process.

  • PDF

The dynamic relaxation method using new formulation for fictitious mass and damping

  • Rezaiee-Pajand, M.;Alamatian, J.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.109-133
    • /
    • 2010
  • This paper addresses the modified Dynamic Relaxation algorithm, called mdDR by minimizing displacement error between two successive iterations. In the mdDR method, new relationships for fictitious mass and damping are presented. The results obtained from linear and nonlinear structural analysis, either by finite element or finite difference techniques; demonstrate the potential ability of the proposed scheme compared to the conventional DR algorithm. It is shown that the mdDR improves the convergence rate of Dynamic Relaxation method without any additional calculations, so that, the cost and computational time are decreased. Simplicity, high efficiency and automatic operations are the main merits of the proposed technique.

Predicted Air Flow Around Objects Using the Discrete Vortex Method

  • Kim, Tae-Hyeung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.E
    • /
    • pp.347-357
    • /
    • 1993
  • The Lagrangian grid-free numerical method, the discrete vortex method, was applied to solve the Navier-Stokes euqations. This method avoids the introduction of numerical viscosity swamping the real physical viscosity at high Reynolds number, unlike Eulerian method, e.g. finite difference and element methods. The boundary integral equation method for the potential flow solution was included to make the discrete vortex method more feasible for complex geometries. The fast adaptive multipole expansion method was incorporated to reduce the computational time from $O(N^2)$ to O(N) for the computations of vortex-vortex interactions. The test problems were air flow around one circular cylinder and two circular cylinders in tandem with various gaps. The numerical results were in excellent gareement with the experimental and other computational results. The applicabilty of the method was discussed with the indoor and the outdoor air pollution problems, especially the contaminant transport in the recirculation regions.

  • PDF

FEM Model-Based Investigation of Ultrasonic TOFD for Notch Inspection

  • Tang, Ziqiao;Yuan, Maodan;Wu, Hu;Zhang, Jianhai;Kim, Hak-Joon;Song, Sung-Jin;Kang, Sung-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • A two-dimensional numerical model based on the finite element method was built to simulate the wave propagation phenomena that occur during the ultrasonic time of flight diffraction (TOFD) process. First, longitudinal-wave TOFD was simulated, and the numerical results agreed well with the theoretical results. Shear-wave TOFD was also investigated because shear waves have higher intensity and resolution. The shear wave propagation was studied using three models with different boundary conditions, and the tip-diffracted shear-to-longitudinal wave was extracted from the A-scan signal difference between the cracked and non-cracked specimens. This signal showed very good agreement between the geometrical and numerical arrival times. The results of this study not only provide better understanding of the diffraction phenomena in TOFD, but also prove the potential of shear-wave TOFD for practical application.