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Two-Dimensional Resistivity Modeling by
Finite Element Method

Hee Joon Kim*

Abstract: Finite element method with linear triangular and bilinear rectangular elements is

applied to solve the three-dimensional potential distribution due to a point source of current located

in or on the surface of the earth containing arbitrary two-dimensional resistivity distribution. The

modeling technique developed in this paper is flexible to model conductive inhomogeneity and

surface topographies, and more accurate to evaluate surface potentials than the conventional techniques

using finite difference method. Since it is possible to reduce nodal points with acceptable accuracy,

this modeling technique is very efficient and economic in terms of execution time and core space.

A few geologic structures adequate to demonstrate above features are simulated in this paper.

INTRODUCTION

The recent developments of data acquisition
techniques with high accuracy and substantially
higher rates over larger areas warrant a more
sophisticated interpretation of the geologic struc-
ture. In regions such as sedimentary basins
where the subsurface structure is approximately
horizontal and the lateral variation is slow, a
reasonable interpretation can be made by fitting
layered (or one-dimensional) earth models.
However, in many cases the structure is not
layered. A more general interpretation assumes
that regional resistivity varies little in strike
direction. This is two-dimensional (2D) problem.

Finite element method (FEM) is a widely
accepted numerical procedure for solving the
differential equations in engineering and physics.
The FEM can be easily applied to irregular-
-shaped objects composed of several different
materials and having mixed boundary condition.
These features of FEM are suitable to model
2D resistivity problems (Coggon, 1971; Fox et
al., 1980; Sasaki, 1981).

In this paper, the FEM is employed to solve
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the potential distribution due to a point source
in or on the surface of the earth containing
arbitrary 2D resistivity distribution. The FEM
modeling technique has both linear triangular
and bilinear rectangular elements. Although the
rectangular element requires a specific coordi-
nates, this property is not inconvenient in the
resistivity modeling. Because of this specific
coordinate, it is more efficient in constructing
matrix equation than the triangular element. A
great geometric flexibility of FEM, however, is
derived from the triangular element. By using
these elements, homogeneous half-space, dip and
valley structures are simulated in this paper. A
comparison between FEM and finite difference
method (FDM) is carried out in the process of
these simulations.

ENERGY MINIMIZATION

Electromagnetic fields behave in such a way
that total energy is minimized. The FEM of
calculating potentials and fields uses this principle
directly. | :

For direct ' current, it is convenient to use
scalar electric potentials. If a potential ¢ is
generated by a point source with a strength of

I located at the origin of Cartesian coordinate,
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then the functional f corresponding to the total
energy of the system is given by (Coggon, 1971)

=L, Le@or+2818(03=)]
dzdydz, M
where ¢ is the conductivity of the earth and &
denotes the Dirac delta function.
If we assume that there are no changes in the
conductivity distribution in y (strike) direction,

i.e.,
2oz, 3, 91=0, @

then the potential ¢(z,y, z) is symmetric about
y=0. Thus the Fourier cosine transform can be
applied and

P(z,g,5)= f :¢(x, y,%) cos(gy) dy, (3)
where @(z,g,z) is the Fourier transformed
potential. In this case, the functional f in (z,

g, %) space equivalent to (1) is

=g o [(F ) oo (5]
+20I6(2)8(2) | dadz. @
The integration in (4) is carried over an area

instead of a volume. However, inverse Fourier
transformation is needed to obtain a potential ¢,

FINITE ELEMENT METHOD

Let us divide a domain of interest into linear
triangular and bilinear rectangular elements and
consider the element equation.

In the linear triangular element, the nodes are
labeled ¢, j and k. The nodal values of @ at the
nodal coordinates (z;,2:), (zj,2;) and (4, 2s)
are 9,0, and 9, respectively. By expressed
I by a linear equation in the interior of the

triangular element, the element equation becomes
(Appendix)

b ¢ ?;
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where
1z =
A:% 1z2 |,
1z =

bi=2;—2, b=2—2, bi—=2,—2
Ci=Zyp—&j, Cj=Ti—Tp, Ch=I;— T
I, is the total current supplied in the element,
and 8, (n=i,j or k)=1 {for the case that z is
located at the origin and 8,=0 for the other

cases.

In the bilinear rectangular element, on the

‘other hand, the nodes are labeled i, j, % and

m. The nodal values at the nodal coordinates
(zi, 2), (25,27, (@r,2) and (Tm, za) are &,
®;, ®. and @,, respectively. The element equa-
tion for the rectangular element is (Appendix)
2-2-1 1 D,
ga | =2 2 1-1 D;
66 -1 1 2-2||0
1 ~1-2 2/)\0,
2 1 ~—1-2\¢9®;

49 | 1 2-2-1]|0
62 | 1 2 2 1 |0
—-2-1 1 2/\0,
4212y(9
n aglab | 2421 || ®;
9 1242 &
2124)\ 0,
0;
+1, | % | =0, ®)
O
B

where
a=y,—y;, and b=x;—x,.

Assembling (5) and (6) for all elements and
introducing the boundary conditions produce a
matrix equation

[K] P=S, €0
where [K] is the coefficient matrix of order =
(n is the number of nodal points), P the column
vector of @; (i=1,2,...,n) and S the .¢olumn
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vector about current sources. The matrix [X]
is always symmetric and positive definite, and
the diagonal coefficients, K;;, are always positive
and relatively large when compared to the off-
diagonal values in the same row. The relatively
large diagonal coefficient allows Gaussian elimi-
nation to be performed without interchanging
rows (pivoting). This is an important fact be-
cause only the non-zero coefficients need to be
stored within the computer. The symmetric
property is also important because there is no
need to store the coefficients below the main
diagonal. In this study, (7) is solved by a
modified Gaussian elimination method (Conte and
deBoor, 1986),

POTENTIAL ESTIMATION

In order to calculate the inverse Fourier trans-
form and to obtain the potential ¢, the matrix
inversion of (7) must be carried out for various
values of g. From (3), the potential to be
estimated is

#(z,0,0=2 ["0(z,6,2) dr. ®

Since @ generally decreases monotonically to
zero as g—oo, the numerical integration of ®
is easy to perform with an adequate sampling,
In this study, the numerical integration is carried
out by fitting the envelope of @ in each subsection
&1 < g < g, by an exponential function of a-
exp(-bg) and using an analytic form

[laerde=towy -0,  ©

and then taking the cumulative sum of these
subsectional integrals up to reasonably large
values of g.

NUMERICAL RESULTS

A few examples of resistivity modeling indicate
the versatility of the FEM described in the
previous sections. First of all to estimate the
accuracy of the FEM, a homogeneous earth of
100 Q+m was simulated. Its model, which con-

sists of only bilinear rectangular elements, has
a grid of 53x12 (=636) nodes (Fig. 1).

Fig. 2 shows the Fourier transformed potential
@ as a function of wavenumber g due to a point
source. The numerical solutions are slightly
smaller than the corresponding analytic solutions
because of errors associated with numerical
approximations. The error is more apparent in
small wavenumber region, but fortunately this
does not give a significant contribution in the
numerical integration. Fig. 3 shows the surface
potentials due to a point source. The FEM
solution is slightly smaller than an analytic one
because the transformed potential undershoots as
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Fig. 1 Left half of rectangular grid.
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Fig. 3 Surface potentials due to a point source:

shown in Fig. 2.

The width and thickness of each element are
small enough to give an accuracy in the appas-
ent resistivity of approximately 4% for the
case of 100 -m half-space and a dipole-dipole
array. This accuracy is superior to that of the
modeling technique using FDM (Kim, 1986) as
shown in Fig. 3. The coordinates of nodal
points in the FDM are the same as the corre-
sponding coordinates in the FEM.

Although FDM gives more accurate results
than FDM, the execution time and core space in
FEM are slightly larger than those in FDM.
The execution time and core space depend mainly
on the dimension of coefficient matrix [K1] in
(7). When one uses a grid of NX M nodes, the
required core spaces are MNX (M+1) in FDM
and MNx (M+2) in FEM, respectively. Here
the size indicated in the bracket is the band-
width of matrix.

Combining bilinear rectangular and linear
triangular elements, one can reduce nodal points
in FEM. Fig. 4 shows one of the reduced grids
in FEM. This grid has 594 nodal points, and
therefore the size of [K] is 594X 14 (=8316)
which is comparable for the grid size in FDM
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Fig. 4 Left half of a reduced grid with bilinear
rectangular and linear triangular elements.
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Fig. 5 Pseudo-sectional view of apparent resistivities
for the dip model of 45°.

(636 % 13=8268). When the homogeneous earth
of 1000 +m is simulated using the reduced grid,
one can find that its solution has a sufficient
accuracy. In fact, in the central equi-spaced
nodes, the differences between surface potentials
evaluated by FEM’s with the grids shown in
Fig. 1 and 4 are smaller than 0.035%. This
means that with nearly same execution time and
core space the FEM gives more accurate results
than the FDM.

Another advantages of FEM against FDM are
shown in Figs. 5 and 6. The FEM has a
greater geometric flexibility to model inhomo-
geneity (Fig. 5) and topography (Fig. 6) than
the FDM. Fig. 5 shows the result for a dip
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Fig. 6 Pseudo-sectional view of apparent resistivities
for the valley model.

model of 45°. From this illustration one can see
that a well-known asymmetric pattern appears
in the pseudo-section and stronger resistivity
anomalies occur in the up-dip side (Coggon,
1973; Kim, 1984). Fig. 6 shows the result for
a valley model. From this figure one can find a
well-known pattern of anomaly due to the valley
(Fox et al., 1980). That is, low resistivity
anomalies appear just below the valley and high
resistivity anomalies occur in the outsides of the
valley.

DISCUSSION AND CONCLUSIONS

In this paper, I developed a finite element
modeling technique using both linear triangular
and bilinear rectangular elements. The bilinear
rectangular element has some useful properties.

Since the interpolation rolynomial in the
rectanglar element contains a nonlinear term
(see (B-1)), the rectangular element can produce
more accurate solutions in the interior of the
earth than the triangular element. Although
the rectangular element requires a specific coor-
dinate as shown in Fig. B, this property is not
inconvenient in the resistivity modeling. Because
of this specific coordinate, the rectangular element
is more efficient in constructing the matrix
equation than the triangular element.

By using only the rectangular elements, the
homogeneous earth of 100{)+m was simulated
as shown in Figs. 2 and 3. The coordinates of
all nodal points in FEM are the same as the
corresponding coordinates in FDM. From Fig. 3,
one can find that the FEM produces more
accurate results than the FDM.

The geometric flexibility in FEM results from
linear triangular elements. This flexibility is
useful to reduce nodal points (Fig. 4), to model
complex geometry of inhomogeneity (Fig. 5),
and to express topography of the earth’s surface
(Fig. 6).

From the simulation of the homogeneous half-
space of 1000)-m with the reduced grid (Fig.
4), one can find that the FEM gives more
accurate results than the FDM with nearly same
computer time and core space. This fact may
lead another conclusion that with nearly same
accuracy FEM is more economic in terms of cost
and storage requirements than FDM.

Fox et al. (1980) estimated surface topographic
effects in resistivity surveys by means of FEM.
They simulated the effects of valley and ridge
by assuming a fictitious layer between the earth
and the air, and by assigning a high resistivity
to the fictitious layer. In their model the resis-
tivity contrast between the fictitious region and
earth must be less than 103 to 105, because
higher contrasts produce a numerical instability.
However, the model in this paper has no fictitious
layer and use the natural boundary condition at
the earth’s surface associated with irregular
terrain, and therefore it is free of numerical
instability. Another advantage of my approach
is that it always has less nodal points in mod-
eling of topography than that of Fox e al
(1980).

It is required to specify the boundary condi-
tions at infinitely distant edges. One usually use
the boundary condition of either Dirichlet type
(the potentials at these edges to be zero) or
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Neumann type (the normal derivatives of poten-
tial at these deges to be zero). However, since
the termination of the lower half-plane at z=
+oo and z=co is done by extending the meshes
far enough away from the sources and conduc-
tive inhomogeneities, these two types of bound-
ary conditions have nearly the same effect to
numerical solutions in the region of interest. In
fact, in the central region of equi-spaced nodes
the differences between surface potentials associ-
ated with the Dirichlet and the Neumann con-
ditions are less than (. 1% for the homogeneous
half-space model of 100Q)+m. In the practical
point of view, therefore, the Neumann condition
is preferable in the resistivity modeling, because
the Neumann condition is assigned automatically
in FEM so that additional computations associ-

ated with boundary conditions can be avoided.
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APPENDIX

Linear Triangular Element
The linear triangular element shown in Fig.
Al has straight sides and three nodes, one at
each corner. The nodes are labeled counterclock-
wise: 7,7 and k. The nodal values of @* are
¢i,¢; and ¢, and the nodal coordinates are
(zi, 2), (25 2;) and (s, z1).
The interpolation polynomial is
P=p1+pox+ Bz,
with the nodal conditions
$=¢; at z=z;, 2=z,
$p=¢; at x=z;, z=7;,

¢d=¢ at z=xz;, z=2,.

the matrix equation

(A-D

(A-2)
Substitutions of these conditions into (A-1) produce

(xj,zj)

Fig. A1 Parameters for the linear triangular element.

*In this Appendix, the Fourier transformed potential is represented by ¢ instead of @.
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(1 zi z; B @;
1$12i}[ﬁz :l%‘}, (A-3)
1z 2 B3 o
which yields
B [ i
B2 J =mq | b b bk} [451 } , (A-9
L B3 Ci Cj Cr e
where

a;=kjzy— 232, bi=2;— 2, Ci=z,—z;
a;—=Xp%;— TiZ, b;zzk—zi, C;=X;— X, (A‘S)
G=x;z;—xz;, bh=2,—2;, =x;—;

and A is the area of triangle given by

2A=

1z z :
1 z; z; } . (A-6)
1 ze 2z

Substitution for g, 8; and B in (A-~1) and rearrangement produce an equation for ¢ in terms of
three shape functions (N;, N; N,) and potentials (¢;, ¢;, ¢e), i.e.,

¢$=Nipi-+ N;pj+ Nig, (A-7)
where
N,' T 1 T a; a; ag
Nj =—2'X x {b, b,‘ bk} . " (A—s)
Nk 2 C; Cj Cp o

The scalar quantity ¢ is related to the nodal values by a set of shape functions that are linear in

z and z. This means that the gradients a¢/ax"and 0¢/0z are constant within the element. For

example,
but

ON,/ox=b,/(24), n=i,j and k. (A-10)
Therefore,

8¢/ 0x=Py=(bip: +bip;+buhr) / (24). (A~1D
Similarly,

8¢/ 0z=P3=cipi+cipj+crpe) [ (2A). (A-12)

Substitutions of (A-7), (A-11) and (A-12) into (4) produce

f:% HAT;T ((bipi+bid;+brghe)?+ (Ci¢i+cj¢j+ck¢k>2]dA+%J]- AGgZ(Ni¢i+Nj¢j+Nk¢k)2dA

+ﬂ [8()8(2) (N g+ Nigy+ Nugh)dA.

By using the integral formula in area coordinate system

vranre. 2A(albleD)
R s (A-19)

the area integrals becomes

[| veaa=[] Nsaa=[] Niaa=G, | A1
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and
_ - _ 4 A-
JLN,-N,- dA= HAN,N,, dA—HAN,,N,- dA=—. (A-16)
Furthermore, by the definition of delta function,
HAIB(x)é(z)dzdz:I, (A-17)
and
ﬂ | 21(2)8(z) dxa'z:ﬂAzIﬁ(z)é(z) dzdz=0, (A-18)
Substitutions of (A-15), (A-16), (A-17) and (A-18) into (A-13) produce
2
f:gLA E(bi¢i+bj¢j+bk¢k)2+ (€i¢i+¢'j¢j+¢‘k¢k) ]+ szA (¢i2+¢jz+¢k2+¢i¢j+¢j¢k+¢k¢i)
o (@it asdy b ad). (A-19)
Applying the minimizing conditions of
0f/0¢,=0, n=i, j and &, (A-20)
to (A-19) yields
bi c; bici 1T [ ¢ 24 211 ol I a;
TA | bic [bj ¢ [qﬁj +% 121(1¢|+54 |a |=0. (A-2D)
b e br o b 112 b a
If a point source is located at node i, z;=2;=0,
;=24 and a;=a,=0, (A-22)

and the third term in (A-21) becomes [I, 0, 0]".

Bilinear rectangular element
The bilinear rectangular element shown in
Fig. Bl has a length 26 and a height 2a.
The nodes are labeled 7, j, 2 and m with node
i always at the lower left corner and the
nodal values of ¢ are ¢;, ¢;, ¢ and ¢,,. A local
coordinate system where the origin is node 7,
is set because shape functions are easier to
evaluate in this reference frame.
The interpolation polynomial in terms of
the local coordinates s and ¢ is
P=P1+ Pas+ st + Pust. B-1
Although the other choices of the interpo-
lation equation (B-1) exist, which would
replace the st term by either s? or £, (B-1)
is the most useful because ¢ is linear in s

Fig. Bl Parameters for the bilinear rectangular element.

along any line of constant ¢ and linear in ¢ along any line of constant s. Because of these properties,

the element is called to be bilinear.

The coefficients 8;, B, 8; and B, in (B-1) are obtained by using the nodal values of ¢ and the

nodal coordinates, i.e.,
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1 000 B &:
126 0 0 ||Baf _ | (B-2)
1 26 2a 4ab || Bs b
1 022 0 /(ps O
Solving this gives
B 4ab 0 0 O b
B\ . 1 | —2a2a 0 0O bi (B-3)
Bs 4ab | _9b 026 0 ||
B 1-11-1 o
Substitution of (B-3) into (B-1) and rearrangement gives
¢—_—Ni¢i+NJ‘¢j+Nk¢k+Nm - (B-4)
where
N,=(1—s/2b)(1—t/2a), N;=s/2b(1—¢/2a), Np=st/4ab, N,=t/2a(1—s/2b). (B-5)

Since the (s, £)-coordinate is parallel to the (z, z)-coordinate and a unit length in either s or ¢ is

the same as a unit length of z or z,

HA f(z, 2) dxdzzﬂA fCs,8) dsdt. (B-6)
The chain rule gives
0N, /6z=0N,/ds, oN,/dz=dN,/ot, n=i,j & and m. (B-7)
Thus the gradients d¢/dx and 9¢/0z are easily obtained as
09 i

oz :L[ ~(2a—t) (Qa—t) t —t ] &;
ap | AL—@-9 —s s (2= b

o0z O
Substitutions of (B-4) and (B-8) into (4) produce

. C oN; ) aN, ] oN, oN,, 2 oN; oN; oON; oN,, 2
f_f.UA{( oz it ox it ox Pt ox ¢'") +( 0z ¢t azj it 0z et 0z ¢”‘) dA

(B-8)

+- B[ Nt Npy+ Nt Nug)? dA+ | 18(2)3(2) (Nig+ Ny Nt Nughe) dA.

(B-9
Its corresponding area integrals are
HA[-N,-, N, Ni, Ny.J dA:%[l, 1,1,177, (B-10)
N? * 4212
4| NiN, N;N, N? 36 11242
\ N;N,, N;N,, N;.N,, N2, 212 4J
C N2
(%) *
ON;  4N; (LN:; 2 2 —2 —1 1
H ox ox ox ) JA_ A 4 -2 92 1 -1
4| ON:  9N. 9N; N, (s )’ S5 l-1 1 22
oz oz ox or ox 1 -1 -2 2
N N N, N N N, (N
ox ox ox ox or ox ox

(B-12)
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and
aNi 2 \
( 0z ) *
ON. | ON; (6N \? 2 L-l-=2
ﬂ 0z 0z ( 0z ) a’A—in 1 2 -2 -1
A| ON: 9N, oN; _ oN, ( oN; )2 3 -1-2 2 1
oz oz 0z 0z oz —2—~1 1 2
ON; 9N, oN; . 9N, ON: N, (aN,,, )2
oz oz 9z oz 0z oz oz (B-13)

Substituting (B-10), (B-11), (B-12) and (B-13) into (B-9) and applying the minimizing condition
of f yields finally

2 -2 —1 1y(é¢ 2 1—1—2} ¢
oa | =2 2 1-1||¢;| , ob | 1 2—-2-1||¢
66 | 1 1 22| 68|15 2 1!|l4
1-1-2 2/ ¢, l2-1 1 2/(¢n
4212N(¢s 0; ’ .
+# 24214 | 41 55 —o (B-10)
1242 ¢ O
2124/)\¢n O

where 8, (n=i,j, k or m) is 1 only if a point source is located at node 7 and 8,=0 for the other
case.
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