• 제목/요약/키워드: Finite element formulation

검색결과 1,168건 처리시간 0.025초

Analysis of Drawbead Process by Static-Explicit Finite Element Method

  • Jung, Dong-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1687-1692
    • /
    • 2002
  • The problem analyzed here is a sheet metal forming process which requires a drawbead. The drawbead provides the sheet metal enough tension to be deformed plastically along the punch face and consequently, ensures a proper shape of final products by fixing the sheet to the die. Therefore, the optimum design of drawbead is indispensable in obtaining the desired formability. A static-explicit finite element analysis is carried out to provide a perspective tool for designing the drawbead. The finite element formulation is constructed from static equilibrium equation and takes into account the boundary condition that involves a proper contact condition. The deformation behavior of sheet material is formulated by the elastic-plastic constitutive equation. The finite element formulation has been solved based on an existing method that is called the static-explicit method. The main features of the static-explicit method are first that there is no convergence problem. Second, the problem of contact and friction is easily solved by application of very small time interval. During the analysis of drawbead processes, the strain distribution and the drawing force on drawbead can be analyzed. And the effects of bead shape and number of beads on sheet forming processes were investigated. The results of the static explicit analysis of drawbead processes show no convergence problem and comparatively accurate results even though severe high geometric and contact-friction nonlinearity. Moreover, the computational results of a static-explicit finite element analysis can supply very valuable information for designing the drawbead process in which the defects of final sheet product can be removed.

The elastoplastic formulation of polygonal element method based on triangular finite meshes

  • Cai, Yong-Chang;Zhu, He-Hua;Guo, Sheng-Yong
    • Structural Engineering and Mechanics
    • /
    • 제30권1호
    • /
    • pp.119-129
    • /
    • 2008
  • A small strain and elastoplastic formulation of Polygonal Element Method (PEM) is developed for efficient analysis of elastoplastic solids. In this work, the polygonal elements are constructed based on traditional triangular finite meshes. The construction method of polygonal mesh can directly utilize the sophisticated triangularization algorithm and reduce the difficulty in generating polygonal elements. The Wachspress rational finite element basis function is used to construct the approximations of polygonal elements. The incremental variational form and a von Mises type model are used for non-linear elastoplastic analysis. Several small strain elastoplastic numerical examples are presented to verify the advantages and the accuracy of the numerical formulation.

이온성고분자액추에이터의 전기화학적 지배방정식의 유한요소모델링 (Finite Element Modeling of Electrochemical Governing Equations for Ionic Polymer Actuators)

  • 강성수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.759-767
    • /
    • 2008
  • Bending deformation of an ionic polymer actuator(IPA) on applied low electric field across its thickness is dominated by electroosmosis of hydrated ions and self-diffusion of free water molecules. In the study by Popovic et al., two processes are assumed to occur sequentially in the way that fast electroosmosis is followed by self-diffusion and finite element formulation for the basic field equations are proposed. However the motions of hydrated ions and water molecules occur at the same time. In this study, those two processes are considered simultaneously and finite element formulation is conducted for the basic field equations governing electrochemical response of an IPA. Some numerical studies for IPA are carried out in order to show the validity of the present formulation.

등방성손상을 고려한 탄소성 대변형 무제의 유한요소해석(제2보) (Finite Element Analysis of Elasto-Plastic Large Deformation considering the Isotropic Damage(the 2nd Report))

  • 이종원
    • 한국해양공학회지
    • /
    • 제14권2호
    • /
    • pp.76-83
    • /
    • 2000
  • this paper was concentrated on the finite element formulation to solve boundary value problems by using the isotropic elasto-plastic damage constitutive model proposed previously(Noh, 2000) The plastic damage of ductile materials is generally accompanied by large plasticdeformation and strain. So nonlinearity problems induced by large deformation large rotation and large strain behaviors were dealt with using the nonlinear kinematics of elasto-plastic deformations based on the continuum mechanics. The elasto-plastic damage constitutive model was applied to the nonlinear finite element formulation process of Shin et al(1997) and an improved analysis model considering the all nonlinearities of structural behaviors is proposed. Finally to investigate the applicability and validity of the numerical model some numerial examples were considered.

  • PDF

FINITE ELEMENT BASED FORMULATION OF THE LATTICE BOLTZMANN EQUATION

  • Jo, Jong-Chull;Roh, Kyung-Wan;Kwon, Young-W.
    • Nuclear Engineering and Technology
    • /
    • 제41권5호
    • /
    • pp.649-654
    • /
    • 2009
  • The finite element based lattice Boltzmann method (FELBM) has been developed to model complex fluid domain shapes, which is essential for studying fluid-structure interaction problems in commercial nuclear power systems, for example. The present study addresses a new finite element formulation of the lattice Boltzmann equation using a general weighted residual technique. Among the weighted residual formulations, the collocation method, Galerkin method, and method of moments are used for finite element based Lattice Boltzmann solutions. Different finite element geometries, such as triangular, quadrilateral, and general six-sided solids, were used in this work. Some examples using the FELBM are studied. The results were compared with both analytical and computational fluid dynamics solutions.

A spectrally formulated finite element method for vibration of a tubular structure

  • Horr, A.M.;Schmidt, L.C.
    • Structural Engineering and Mechanics
    • /
    • 제4권3호
    • /
    • pp.209-226
    • /
    • 1996
  • One of the major divisions in the mathematical modelling of a tubular structure is to include the effect of the transverse shear stress and rotary inertia in vibration of members. During the past three decades, problems of vibration of tubular structures have been considered by some authors, and special attention has been devoted to the Timoshenko theory. There have been considerable efforts, also, to apply the method of spectral analysis to vibration of a structure with rectangular section beams. The purpose of this paper is to compare the results of the spectrally formulated finite element analyses for the Timoshenko theory with those derived from the conventional finite element method for a tubular structure. The spectrally formulated finite element starts at the same starting point as the conventional finite element formulation. However, it works in the frequency domain. Using a computer program, the proposed formulation has been extended to derive the dynamic response of a tubular structure under an impact load.

강-점소성 ALE 유한요소 수식화에 근거한 사각형 형재의 평금형 등온 압출에 대한 3차원 해석 (A Three-Dimensional Rigid-Viscoplastic Finite Element Analysis of isothermal Square Die Extrusion of a Square Section Based on ALE Description)

  • 강연식;양동열
    • 소성∙가공
    • /
    • 제5권1호
    • /
    • pp.55-60
    • /
    • 1996
  • In the finite element analysis of metal forming processes the updated Lagrangian approach has been widely and effectively used to simulate the non-steady state problems. however some difficulties have arisen from abrupt flow change as in extrusion through square dies. In the present work an ALE(arbitrary Lagrangian-Euleria) finite element formulation for deforma-tion analysis are presented fro rigid-viscoplastic materials. The developed finite element program is applied to the isothermal analysis of square die extrusion of a square section. The computational results are compared with those by the updated Lagrangian finite element analysis.

  • PDF

평면 뼈대구조물의 큰 변형에 대한 비선형 유한요소의 정식화 (A Finite Element Nonlinear Formulation for Large Deformations of Plane Frames)

  • 윤영묵;박문호
    • 전산구조공학
    • /
    • 제7권4호
    • /
    • pp.69-83
    • /
    • 1994
  • 평면 뼈대구조물의 매우 큰 변형에 대하여 정확한 비선형 유한요소의 정식화 과정을 나타내었다. 유한요소의 구성은 변화되는 재료의 기준 물성치에 근거를 두고 형성하였으며 매우 큰 변형을 받는 재료의 성질을 명확하게 특정지어 진응력-변형율 관계식을 직접 적용할 수 있도록 하였다. 큰회전과 작은 변형율을 받는 문제들을 형성하기 위하여 Co-rotation 접근 방법을 사용하였다. 큰 변형을 일으키는 요소의 문제를 해결하기 위하여 직선보 형태의 유한요소를 사용하였으며 개개의 유한요소의 정식화는 축방향력의 영향을 고려하여 미소 처짐보이론을 바탕으로 형성하였다. 본 연구에서 형성된 큰 변형에 대한 비선형 유한요소의 타당성을 확인하기 위해 몇몇 수치해들을 해석하고 검토하였다.

  • PDF

A new finite element formulation for vibration analysis of thick plates

  • Senjanovic, Ivo;Vladimir, Nikola;Cho, Dae Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권2호
    • /
    • pp.324-345
    • /
    • 2015
  • A new procedure for determining properties of thick plate finite elements, based on the modified Mindlin theory for moderately thick plate, is presented. Bending deflection is used as a potential function for the definition of total (bending and shear) deflection and angles of cross-section rotations. As a result of the introduced interdependence among displacements, the shear locking problem, present and solved in known finite element formulations, is avoided. Natural vibration analysis of rectangular plate, utilizing the proposed four-node quadrilateral finite element, shows higher accuracy than the sophisticated finite elements incorporated in some commercial software. In addition, the relation between thick and thin finite element properties is established, and compared with those in relevant literature.

Evaluation of Probabilistic Finite Element Method in Comparison with Monte Carlo Simulation

  • 이재영;고홍석
    • 한국농공학회지
    • /
    • 제32권E호
    • /
    • pp.59-66
    • /
    • 1990
  • Abstract The formulation of the probabilistic finite element method was briefly reviewed. The method was implemented into a computer program for frame analysis which has the same analogy as finite element analysis. Another program for Monte Carlo simulation of finite element analysis was written. Two sample structures were assumed and analized. The characteristics of the second moment statistics obtained by the probabilistic finite element method was examined through numerical studies. The applicability and limitation of the method were also evaluated in comparison with the data generated by Monte Carlo simulation.

  • PDF