• Title/Summary/Keyword: Finite different method

Search Result 2,314, Processing Time 0.03 seconds

Finite element vibration analysis of laminated composite parabolic thick plate frames

  • Das, Oguzhan;Ozturk, Hasan;Gonenli, Can
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.43-59
    • /
    • 2020
  • In this study, free vibration analysis of laminated composite parabolic thick plate frames by using finite element method is introduced. Governing equations of an eigenvalue problem are obtained from First Order Shear Deformation Theory (FSDT). Finite element method is employed to obtain natural frequency values from the governing differential equations. The frames consist of two flat square plates and one singly curved plate. Parameters like radii of curvature, aspect ratio, ply orientation and boundary conditions are investigated to understand their effect on dynamic behavior of such a structure. In addition, multi-bay structures of such geometry with different stacking order are also taken into account. The composite frame structures are also modeled and simulated via ANSYS to verify the accuracy of the present study.

An analytical approach for aeroelastic analysis of tail flutter

  • Gharaei, Amin;Rabieyan-Najafabadi, Hamid;Nejatbakhsh, Hossein;Ghasemi, Ahmad Reza
    • Advances in Computational Design
    • /
    • v.7 no.1
    • /
    • pp.69-79
    • /
    • 2022
  • In this research, the aeroelastic instability of a tail section manufactured from aluminum isotropic material with different shell thickness investigated. For this purpose, the two degrees of freedom flutter analytical approach are used, which is accompanied with simulation by finite element analysis. Using finite element analysis, the geometry parameters such as the center of mass, the aerodynamic center and the shear center are determined. Also, by simulation of finite element method, the bending and torsional stiffnesses for various thickness of the airfoil section are determined. Furthermore, using Lagrange's methods the equations of motion are derived and modal frequency and critical torsional/bending modes are discussed. The results show that with increasing the thickness of the isotropic airfoil section, the flutter and divergence speeds increased. Compared of the obtained results with other research, indicates a good agreement and reliability of this method.

Arc-length and explicit methods for static analysis of prestressed concrete members

  • Mercan, Bulent;Stolarski, Henryk K.;Schultz, Arturo E.
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.17-37
    • /
    • 2016
  • This paper compares the arc-length and explicit dynamic solution methods for nonlinear finite element analysis of prestressed concrete members subjected to monotonically increasing loads. The investigations have been conducted using an L-shaped, prestressed concrete spandrel beam, selected as a highly nonlinear problem from the literature to give insight into the advantages and disadvantages of these two solution methods. Convergence problems, computational effort, and quality of the results were investigated using the commercial finite element package ABAQUS. The work in this paper demonstrates that a static analysis procedure, based on the arc-length method, provides more accurate results if it is able to converge on the solution. However, it experiences convergence problems depending upon the choice of mesh configuration and the selection of concrete post-cracking response parameters. The explicit dynamic solution procedure appears to be more robust than the arc-length method in the sense that it provides acceptable solutions in cases when the arc-length approach fails, however solution accuracy may be slightly lower and computational effort may be significantly larger. Furthermore, prestressing forces must be introduced into the finite element model in different ways for the explicit dynamic and arc-length solution procedures.

MECHANICAL PROPERTIES OF TWO-WAY DIFFERENT CONFIGURATIONS OF PRESTRESSED CONCRETE MEMBERS SUBJECTED TO AXIAL LOADING

  • ZHANG, CHAOBI;CHEN, JIANYUN;XU, QIANG;LI, JING
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.633-645
    • /
    • 2015
  • In order to analyze the mechanical properties of two-way different configurations of prestressed concrete members subjected to axial loading, a finite element model based on the nuclear power plant containments is demonstrated. This model takes into account the influences of different principal stress directions, the uniaxial or biaxial loading, and biaxial loading ratio. The displacement-controlled load is applied to obtain the stress estrain response. The simulated results indicate that the differences of principal stress axes have great effects on the stress-strain response under uniaxial loading. When the specimens are subjected to biaxial loading, the change trend of stress with the increase of loading ratio is obviously different along different layout directions. In addition, correlation experiments and finite element analyses were conducted to verify the validity and reliability of the analysis in this study.

Sensitivity analysis based on complex variables in FEM for linear structures

  • Azqandi, Mojtaba Sheikhi;Hassanzadeh, Mahdi;Arjmand, Mohammad
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.15-32
    • /
    • 2019
  • One of the efficient and useful tools to achieve the optimal design of structures is employing the sensitivity analysis in the finite element model. In the numerical optimization process, often the semi-analytical method is used for estimation of derivatives of the objective function with respect to design variables. Numerical methods for calculation of sensitivities are susceptible to the step size in design parameters perturbation and this is one of the great disadvantages of these methods. This article uses complex variables method to calculate the sensitivity analysis and combine it with discrete sensitivity analysis. Finally, it provides a new method to obtain the sensitivity analysis for linear structures. The use of complex variables method for sensitivity analysis has several advantages compared to other numerical methods. Implementing the finite element to calculate first derivatives of sensitivity using this method has no complexity and only requires the change in finite element meshing in the imaginary axis. This means that the real value of coordinates does not change. Second, this method has the lower dependency on the step size. In this research, the process of sensitivity analysis calculation using a finite element model based on complex variables is explained for linear problems, and some examples that have known analytical solution are solved. Results obtained by using the presented method in comparison with exact solution and also finite difference method indicate the excellent efficiency of the proposed method, and it can predict the sustainable and accurate results with the several different step sizes, despite low dependence on step size.

A Unification Algorithm for DTDs of XML Documents having a Similar Structure (유사 구조를 가지는 XML 문서들의 DTD 통합 알고리즘)

  • 유춘식;우선미;김용성
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.10
    • /
    • pp.1400-1411
    • /
    • 2004
  • There are many cases that many XML documents have different DTDs in spite of having a similar structure and being logically same kind of document. For this reason, It occurs a problem that these XML documents have different database schema and are stored in different databases. So, in this paper, we propose an algorithm that unifies DTDs of these XML documents using the finite automata and the tree structure. The finite automata is suitable for representing repetition operators and connectors of DTD, and is a simple representation method for DTD. By using the finite automata, we are able to reduce the complexity of algorithm. And we apply a proposed algorithm to unify DTDs of science journals.

An hp-angular adaptivity with the discrete ordinates method for Boltzmann transport equation

  • Ni Dai;Bin Zhang;Xinyu Wang;Daogang Lu;Yixue Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.769-779
    • /
    • 2023
  • This paper describes an hp-angular adaptivity algorithm in the discrete ordinates method for Boltzmann transport applications with strong angular effects. This adaptivity uses discontinuous finite element quadrature sets with different degrees, which updates both angular mesh and the degree of the underlying discontinuous finite element basis functions, allowing different angular local refinement to be applied in space. The regular and goal-based error metrics are considered in this algorithm to locate some regions to be refined. A mapping algorithm derived by moment conservation is developed to pass the angular solution between spatial regions with different quadrature sets. The proposed method is applied to some test problems that demonstrate the ability of this hp-angular adaptivity to resolve complex fluxes with relatively few angular unknowns. Results illustrate that a reduction to approximately 1/50 in quadrature ordinates for a given accuracy compared with uniform angular discretization. This method therefore offers a highly efficient angular adaptivity for investigating difficult particle transport problems.

Vibration of Pipes Coupled with Internal and External Fluids (내부 및 외부 유체와 연성된 파이프의 진동 해석)

  • Ryue, Jung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.142-150
    • /
    • 2012
  • The waveguide finite element (WFE) method is a useful numerical technique to investigate wave propagation along waveguide structures which have uniform cross-sections along the length direction ('x' direction). In the present paper, the vibration and radiated noise of the submerged pipe with fluid is investigated numerically by coupling waveguide finite elements and wavenumber boundary elements. The pipe and internal fluid are modelled with waveguide finite elements and the external fluid with wavenumber boundary elements which are fully coupled. In order to examine this model, the point mobility, dispersion curves and radiated power are calculated and compared for several different coupling conditions between the pipe and internal/external fluids.

Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method

  • Shahmohammadi, Mohammad Amin;Azhari, Mojtaba;Saadatpour, Mohammad Mehdi
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.361-376
    • /
    • 2020
  • This paper presents a free vibration analysis of shell panels made of functionally graded material (FGM) in the form of the ordinary and sandwich FGM and laminated shells using the isogeometric B3-spline finite strip method (IG-SFSM). B3-spline and Lagrangian interpolation are employed along the longitudinal and transverse directions respectively in this type of finite strip. The introduced finite strip formulation is based on the degenerated shell method, which provides variable thickness, arbitrary geometries, and analysis of thin or thick shells. Validity of the obtained natural frequencies by IG-SFSM is checked by comparison with results extracted from references for similar cases in different examples. These examples incorporate several geometries, materials, boundary conditions, and continuous thickness variation. A comparison of these two kinds of results and their proximity showed that the introduced IG-SFSM is a reliable tool which can be used in analysis of shells with the aforementioned properties.

Free vibration and buckling analyses of curved plate frames using finite element method

  • Oguzhan Das;Hasan Ozturk;Can Gonenli
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.765-778
    • /
    • 2023
  • This study investigates the free vibration and buckling analyses of isotropic curved plate structures fixed at all ends. The Kirchhoff-Love Plate Theory (KLPT) and Finite Element Method (FEM) are employed to model the curved structure. In order to perform the finite element analysis, a four-node quadrilateral element with 5 degrees of freedom (DOF) at each node is utilized. Additionally, the drilling effect (θz) is considered as minimal to satisfy the DOF of the structure. Lagrange's equation of motion is used in order to obtain the first ten natural frequencies and the critical buckling values of the structure. The effects of various radii of curvatures and aspect ratio on the natural frequency and critical buckling load values for the single-bay and two-bay curved frames are investigated within this scope. A computer code based on finite element analysis is developed to perform free vibration and buckling analysis of curved plate frames. The natural frequency and critical buckling load values of the present study are compared with ANSYS R18.2 results. It has been concluded that the results of the present study are in good agreement with ANSYS results for different radii of curvatures and aspect ratio values of both single-bay and two-bay structures.