• Title/Summary/Keyword: Finite deformation

Search Result 3,027, Processing Time 0.032 seconds

HOLD EFFECT IN FINITE TORSION OF A COMPRESSIBLE ELASTIC TUBE

  • Akinola, A.P;Layeni, O.P;Ldejobi, O.A.;Umoru, L.E.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.323-336
    • /
    • 2004
  • We consider the application of complex variable method to elastic problem and investigate the nonlinear effect of finite torsion of a compressible elastic composite layer. We obtain that as a result of finite deformation approach, a tube subjected to torsion decreases in radius giving rise to a “hold effect”.

Two Back Stress Hardening Models in Rate Independent Rigid Plasticity (변형률 독립 강소성 구성 방정식에서의 이중 후방 응력 경화 모델)

  • Yun S. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.327-337
    • /
    • 2005
  • In the present work, the two back stress kinematic hardening models are proposed by combining Armstrong-Frederick, Phillips and Ziegler's hardening rules. Simple combination of hardening rules using simple rule of mixtures results in various evolutions of the kinematic hardening parameter. Using the combined hardening models the ultimate back stress fur the present models is also derived. The stress rate is co-rotated with respect to the spin of substructure due to the assumption of kinematic hardening rule in finite deformation regime. The work piece under consideration is assumed to consist of the elastic and the rigid plastic deformation zone. Then, the J2 deformation theory is facilitated to characterize the plastic deformation behavior under various loading conditions. The plastic deformation localization behaviors strongly depend on the constitutive description namely back stress evolution and its hardening parameters. Then, the analysis for Swift's effects under the fixed boundaries in axial directions is carried out using simple shear deformation.

Observation of the Deformation-Induced Anisotropy in the Square-Die Extrusion Process (평금형 압출공정에 대한 변형이방성 예측 알고리즘의 적용)

  • 이창희;양동열;이용신
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.86-89
    • /
    • 2002
  • Due to extremely large reduction of area or extrusion ratio in ordinary production of extruded profiles, anisotropy is naturally induced by large severe deformation during the extrusion process. Therefore, the anisotropic properties play a great role in the post processing of extruded profiles, such as in bending. Moreover, undesirable deformation will be involved when the deformation-induced anisotropy is ignored. In order to observe the deformation-induced anisotropy of the thin-walled product, the proposed algorithm is applied to some chosen industrial extrusion processes. In the resent work, the method for prediction of deformation-induced anisotropy employing the Barlats six-component yield potential to the rigid-plastic finite element method is proposed. The proposed algorithm is verified with the comparison to the crystallographic texture analysis, and then applied to the C-section exclusion process using a square die. The predicted anisotropy is then compared with the experimental and computational observations for validating the proposed algorithm.

  • PDF

Observation of the Deformation-Induced Anisotropy in the Square-Die Extrusion Process (평금형 압출공정에 대한 변형이방성 예측 알고리즘의 적용)

  • 이창희;양동열;이용신
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.724-730
    • /
    • 2002
  • Due to extremely large reduction of area or extrusion ratio in ordinary production of extruded profiles, anisotropy is naturally induced by large severe deformation during the extrusion process. Therefore, the anisotropic properties play a great role in the post processing of extruded profiles, such as in bending. Moreover, undesirable deformation will be involved when the deformation-induced anisotropy is ignored. In order to observe the deformation-induced anisotropy of the thin-walled product, the proposed algorithm is applied to some chosen industrial extrusion processes. In the present work, the method for prediction of deformation-induced anisotropy employing the Barlats six-component yield potential to the rigid-plastic finite element method is proposed. The proposed algorithm is verified with the comparison to the crystallographic texture analysis, and then applied to the C-section extrusion process using a square die. The predicted anisotropy is then compared with the experimental and computational observations for validating the proposed algorithm.

Analyses of Large Deformation Problems in Geotechnical Engineering using Particle Method (입자법을 이용한 지반공학 대변형 문제 해석)

  • Park, Sung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1090-1094
    • /
    • 2009
  • Many problems in geotechnical engineering such as slop failure, debris flow, ground heaving due to embankment, and lateral flow caused by liquefaction are related to large deformation rather than small deformation. Traditional numerical methods such as finite element and finite difference methods have a difficulty to solve such large deformations because they use grids. A particle method was developed for fluid dynamics. The particle method can solve large deformation problems because it uses particles to discretize differential equations. It can also include soil constitutive model and thus solve soil behavior on various boundary conditions. In this study, a particle method, which is based on particles rather than grids, is introduced and used to simulate large deformation including soil failure. The developed method can be applied for various large deformation problems in geotechnical engineering because it incorporates soil constitutive models.

  • PDF

Spline finite strip method incorporating different plate theories for thick piezoelectric composite plates

  • Akhras, G.;Li, W.C.
    • Smart Structures and Systems
    • /
    • v.5 no.5
    • /
    • pp.531-546
    • /
    • 2009
  • In the present analysis, the spline finite strip with higher-order shear deformation is formulated for the static analysis of piezoelectric composite plates. The proposed method incorporates Reddy's third-order shear deformation theory, Touratier's "Sine" model, Afaq's exponential model, Cho's higher-order zigzag laminate theory, as well as the classic plate theory and the first-order plate theory. Thus, the analysis can be conducted based on any of the above-mentioned theories. The selection of a specific method is done by simply changing a few terms in a 2 by 2 square matrix and the results, obtained according to different plate theories, can be compared to each other. Numerical examples are presented for piezoelectric composite plates subjected to mechanical loading. The results based on different shear deformation theories are compared with the three-dimensional solutions. The behaviours of piezoelectric composite plates with different length-to-thickness ratios, fibre orientations, and boundary conditions are also investigated in these examples.

Topology Optimization of Structures in Plastic Deformation using Finite Element Limit Analysis (유한요소 극한해석을 이용한 소성변형에서의 구조물의 위상최적화)

  • Lee, Jong-Sup;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.603-608
    • /
    • 2008
  • It is well known that the topology optimization for plastic problem is not easy since the iterative analyses to evaluate the objective and cost function with respect to the design variation are very time-consuming. The finite element limit analysis is an efficient tool which is possible to predict collapse modes and sequential collapse loads of a structure considering not only large deformation but also plastic material behavior with moderate computing cost. In this paper, the optimum topology of a structure considering large and plastic deformation is obtained using the finite element limit analysis. To verify the constructed optimization code, topology optimizations of some typical problems are performed and the optimal topologies by elastic design and plastic design are compared.

  • PDF

A Finite Element Analysis for a Rotating Cantilever Beam (회전 외팔보에서의 유한요소 연구)

  • Chung, Jin-Tai;Yoo, Hong-Hee;Kim, Gang-Seong
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.529-534
    • /
    • 2000
  • A finite element analysis for a rotating cantilever beam is presented in this study. Based on a dynamic modelling method using the stretch deformation instead of the conventional axial deformation, three linear partial differential equations are derived from Hamilton's principle. Two of the linear differential equations show the coupling effect between stretch and chordwise deformations. The other equation is an uncoupled one for the flapwise deformation. From these partial differential equations and the associated boundary conditions, are derived two weak forms: one is for the chordwise motion and the other is for the flapwise motion. The weak forms are spatially discretized with newly defined two-node beam elements. With the discretized equations or the matrix-vector equations, the behaviours of the natural frequencies are investigated for the variation of the rotating speed.

  • PDF

Deformation and Fracture Behavior of Wall Thinned Carbon Steel Pipes (감육된 탄소강배관의 변형과 파괴거동)

  • Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.17-23
    • /
    • 2006
  • Monotonic four-point bending tests were conducted on straight pipe specimens, 102 mm in diameter with local wall thinning, in order to investigate the effects of the depth, shape, and location of wall thinning on the deformation and failure behavior of pipes. The local wall thinning simulated natural erosion/corrosion metal loss. The deformation and fracture behavior of the straight pipes with local wall thinning was compared with that of non wall-thinning pipes. The failure modes were classifiedas local buckling, ovalization, or crack initiation, depending on the depth, shape, and location of the local wall thinning. Three-dimensional elasto-plastic analyses were carried out using the finite element method. The deformation and failure behavior, simulated by finite element analyses, coincided with the experimental results.

Deformation Behaviors of Materials during Nanoindentation Test and Simulation by Three-Dimensional Finite Element Analysis (재료의 나노인덴테이션 변형 거동과 3차원 유한요소해석)

  • Kim Ji-soo;Yang Hyeon-yun;Yun Jon-do;Cho Sang-bong
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.436-442
    • /
    • 2004
  • Elastic and plastic deformation behaviors of the high purity aluminum and the silica glass were studied using nanoindentation and finite element analysis(FEA) techniques. Berkovich- and cone-type indenters were used for the nanoindentation test. Deformation behaviors and nanoindent profiles of elastic, elastic-plastic or plastic materials were clearly visualized by FEA simulation. Effects of the penetration depth and strain hardening on the deformation behavior were examined. Pile-up and sink-in behaviors were studied by using FEA technique. Degree of pile-up or sink-in was found to be a function of the ratio of elastic modulus to yield strength of materials. FEA was found to be an effective method to study deformation behaviors of materials under nanoindentation, especially in the case when pile-up or sink-in phenomena occurred.