• Title/Summary/Keyword: Finite dam

Search Result 196, Processing Time 0.019 seconds

Finite Element A nalysis of Gradually and Rapidly Varied Unsteady Flow in Open Channel:I.Theory and Stability Analysis (개수로내의 점변 및 급변 부정류에 대한 유한요소해석 :I.이론 및 수치안정성 해석)

  • Han, Kun-Yeun;Park, Jae-Hong;Lee, Jong-Tae
    • Water for future
    • /
    • v.29 no.6
    • /
    • pp.167-178
    • /
    • 1996
  • The simulation techniques of hydrologic data series have been developed for the purposes of the design of water resources system, the optimization of reservoir operation, and the design of flood control of reservoir, etx. While the stochastic models are usually used in most analysis of water resources fields for the generation of data sequences, the indexed sequential modeling (ISM) method based on generation of a series of overlapping short-term flow sequences directly from the historical record has been used for the data generation in western USA since the early of 1980's. It was reported that the reliable results by ISM were obtained in practical applications. In this study, we generate annual inflow series at a location of Hong Cheon Dam site by using ISM method and first order autoregressive model (AR(1)), and estimate the drought characteristics for the comparison aim between ISM and AR(1).

  • PDF

A Numerical Flood Routing Model at the Downstream of the Han River (한강하류부(漢江下流部)의 홍수추적(洪水追跡) 수치모형개발(數値模型開發))

  • Lee, Won Hwan;Park, Sang Deog
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.63-70
    • /
    • 1989
  • The numerical model for the flood routing at the downstream of the Han river is established by using Preissmann's four-point linear implicit finite difference scheme. It is approved by the applications of this model to the selected four flood events that the released discharge hydrograph at Paldang dam which is used as upstream boundary condition of this model is better than the discharge hydrograph at Goan site. Such a result is due to the poor reliability of rating curve at Goan site. As its alternative, new rating curve at Goan site is proposed by means of applications of this numerical flood routing model. The variations of Manning's roughness coefficient may be negligible in view of the flood routing results.

  • PDF

Development of Numerical Model to Analyze Levee Break (하천제방붕괴 해석모형의 개발)

  • Park, Jae-Hong;Han, Kun-Yeun;Ahn, Ki-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.571-578
    • /
    • 2009
  • Levee-break Analysis model is developed to predict the variation of breach width according to time and to estimate inundation area and depth in protected lowland. This Model calculate flood depth using 4 point implicit finite difference method in river channel and analyze breach flow based on physical theory introducing soil transport equation and erosion process. Breach analysis model and channel flood model are combined into Levee-Break Model and this model is applied to actual levee break case. Then, this model can simulate reasonably many levee-break parameters such as river stage, breach width, breach formation and so on. If the applicability of this model is proved through applications to more various actual levee-break cases, the suggested model is expected to do more accurate flood analyses on levee break site.

Infiltration Analysis for Surficial Stability Evaluation of Two-layered Slopes (2층 지반의 표면파괴에 대한 안정성 평가를 위한 침투거동 해석)

  • Cho Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.45-53
    • /
    • 2005
  • Shallow slope failures in residual soil during periods of prolonged infiltration are common over the world. Therefore, this study examines an approximate method to estimate the influence of infiltration on surficial stability of slopes by one-dimensional infiltration model. Modified GAML model based on the Green-Ampt model was extended to predict the infiltration behavior of two-layered slope. Then, the model has been considered to evaluate the likelihood of shallow slope failure which is induced by a particular rainfall event that accounts for the rainfall intensity and duration for various return periods in two-layered soil profile. The results obtained from the approximate method were compared with those obtained from numerical analyses. According to the results, with the use of properly estimated input parameters, the proposed method was found to give good results that agree reasonably well to those of the more rigorous finite element analyses.

An Analytical Solution of Flow and Progressive Wave-Induced Residual Pore Water Pressure in Seabed (흐름과 진행파에 의한 해저지반 내 잔류간극수압의 해석해)

  • Lee, Kwang-Ho;Kim, Dong-Wook;Kang, Gi-Chun;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.7
    • /
    • pp.13-28
    • /
    • 2015
  • This study extended the Lee et al.'s (2015a) solution which improved the existing analytical solution for prediction of the residual pore water pressure into progressive wave and flow coexisting field. At this time, the variation of incident wave period and wave length should be incorporated to Lee et al.'s (2015a) analytical solution, which does not consider flow. For the case of infinite thickness, the new analytical solution using Fourier series was compared to the analytical solution using Laplace transformation proposed by Jeng and Seymour (2007). It was verified that the new solution was identical to the Jeng and Seymour's solution. After verification of the new analytical solution, the residual pore water pressure head was examined closely under various given values of flow velocity's magnitude, direction, incident wave's period and seabed thickness. In each proposed analytical solution, asymptotic approach to shallow depth with the changes in the soil thickness within finite soil thickness was found possible, but not to infinite depth. It is also identified that there exists a discrepancy case between the results obtained from the finite and the infinite seabed thicknesses even on the same soil depth.

An Analytical Solution of Dynamic Responses for Seabed under Coexisting Fields of Flow and Partial Standing Wave with Arbitrary Reflection Ratio (흐름과 임의반사율을 갖는 부분중복파와의 공존장하에서 해저지반내 동적응답의 해석해)

  • Lee, Kwang-Ho;Kim, Dong-Wook;Kang, Gi-Chun;Kim, Do-Sam;Kim, Tae-Hyung;Na, Seung-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.27-44
    • /
    • 2015
  • An analytical solution of dynamic responses for seabed in finite and infinite thicknesses including shallow has been developed under flow and partial standing wave with arbitrary reflection ration coexisting field at a constant water depth condition. In the analytical solution, a field was simply transited to a coexisting field of progressive wave and flow when reflection ratio was 0 and to a coexisting field of fully standing wave and flow when reflection ratio was 1. Based on the Biot's consolidation theory, the seabed was assumed as a porous elastic media with the assumptions that pore fluid is compressible and Darcy law governs the flow. The developed analytical solution was compared with the existing results and was verified. Using the analytical solution the deformation, pore pressure, effective and shear stresses were examined under various given values of reflection ratio, flow velocity, incident wave's period and seabed thickness. From this study, it was confirmed that the dynamic response of seabed was quite different depending on consideration of flow, which causes changing period and length of incident and reflection waves. It was also confirmed that dynamic response significantly depends on the magnitude of reflection ratio.