DOI QR코드

DOI QR Code

An Analytical Solution of Flow and Progressive Wave-Induced Residual Pore Water Pressure in Seabed

흐름과 진행파에 의한 해저지반 내 잔류간극수압의 해석해

  • Lee, Kwang-Ho (Dept. of Energy Resources and Plant Eng., Catholic Kwandong Univ.) ;
  • Kim, Dong-Wook (Dept. of Civil and Environmental Eng., Korea Maritime and Ocean Univ.) ;
  • Kang, Gi-Chun (Dam & Watershed Maintenance Dept., K-water) ;
  • Kim, Do-Sam (Dept. of Civil Eng., Korea Maritime and Ocean Univ.) ;
  • Kim, Tae-Hyung (Dept. of Civil Eng., Korea Maritime and Ocean Univ.)
  • 이광호 (가톨릭관동대학교 에너지자원플랜트공학과) ;
  • 김동욱 (한국해양대학교 토목환경공학과) ;
  • 강기천 (한국수자원공사 댐.유역관리처) ;
  • 김도삼 (한국해양대학교 건설공학과) ;
  • 김태형 (한국해양대학교 건설공학과)
  • Received : 2015.04.17
  • Accepted : 2015.07.14
  • Published : 2015.07.31

Abstract

This study extended the Lee et al.'s (2015a) solution which improved the existing analytical solution for prediction of the residual pore water pressure into progressive wave and flow coexisting field. At this time, the variation of incident wave period and wave length should be incorporated to Lee et al.'s (2015a) analytical solution, which does not consider flow. For the case of infinite thickness, the new analytical solution using Fourier series was compared to the analytical solution using Laplace transformation proposed by Jeng and Seymour (2007). It was verified that the new solution was identical to the Jeng and Seymour's solution. After verification of the new analytical solution, the residual pore water pressure head was examined closely under various given values of flow velocity's magnitude, direction, incident wave's period and seabed thickness. In each proposed analytical solution, asymptotic approach to shallow depth with the changes in the soil thickness within finite soil thickness was found possible, but not to infinite depth. It is also identified that there exists a discrepancy case between the results obtained from the finite and the infinite seabed thicknesses even on the same soil depth.

본 연구에서는 잔류간극수압의 추정에 관한 기존의 해석해에서 지적된 오류를 수정한 Lee et al.(2015a)의 연구결과를 진행파와 흐름의 공존장으로 확장한다. 이 때, 흐름이 없는 경우를 대상으로 한 Lee et al.(2015a)의 이론결과에 흐름에 의한 입사파의 주기와 파장의 변화를 고려하여야 한다. 검증에서는 Laplace 변환법으로부터 무한 두께의 경우에 대해서만 해를 제시한 Jeng and Seymour(2007)의 해석해와 Fourier 급수전개법에 의한 본 해석해의 두 결과를 비교하여 각각 상이한 형태를 갖는 두 해석해의 결과가 완전히 동일하다는 것을 확인할 수 있었다. 따라서, 유한, 무한 및 얕은 두께의 해저지반에 대한 각 해석해에 흐름속도의 크기와 방향, 지반두께 및 입사파 주기 등을 변화시켜 잔류간극수두의 변화특성을 면밀히 분석 검토하였다. 제시되는 각 해석해에서 지반두께의 변화에 의해 유한 두께의 토층에서 얕은 두께로의 점근적인 접근은 가능하지만, 무한 두께로의 접근은 불가능하며, 유한 두께와 무한 두께의 사이에는 동일한 토층 두께에 대해서도 서로의 결과가 일치하지 않는 경우가 있다는 것을 확인할 수 있었다.

Keywords

References

  1. Biot, M. A. (1941), "General Theory of Three-dimensional Consolidation", J. Applied Physics, Vol.12, pp.155-164. https://doi.org/10.1063/1.1712886
  2. Burcharth, H.F. (1987), The lesson from recent breakwater failures. Development in breakwater design, Invited Speech Presented at World Federation of Engineering Organization Technical Congress, Vancourver.
  3. Castro, G. (1975), "Liquefaction and Cyclic Mobility of Saturated Sands", J. Geotechnical Engineering Division, Vol.101, No.GT6, pp.551-569.
  4. Cheng, L., Sumer, B. M., and Fredsoe, J. (2001), "Solution of Pore Pressure Build up due to Progressive Waves", Int. J. Numerical and Analytical Methods in Geomechanics, Vol.25, pp.885-907. https://doi.org/10.1002/nag.159
  5. Clukey, E. C., Kulhawy, F. H., and Liu, P. L.-F. (1983), "Laboratory and Field Investigation of Wave-sediment Interaction", Joseph H. Defrees Hydraulic Laboratory, School of Civil and Environmental Engineering, Cornell University, Ithaca, NY.
  6. Clukey, E. C., Kulhawy, F. H., Liu, P. L.-F., and Tate, G. B. (1985), "The Impact of Wave Loads and Pore-water Pressure Generation on Initiation of Sediment Transport", Geo-Marine Letters, Vol.5, pp.177-183. https://doi.org/10.1007/BF02281636
  7. de Alba, P., Seed, H. B., and Chan, C. K. (1976), "Sand Liquefaction in Large-scale Simple Shear Tests", J. Geotechnical Engineering Division, Vol.102, pp.909-928.
  8. Hamada, M., O'Rourke, T. D., and Yoshida, N. (1994), "Liquefactioninduced Large Ground Displacement", 13th ICSMFE, Performance of Ground Soil during Earthquake, pp.93-108.
  9. Ishihara, K. (1993), "Liquefaction and Flow Failure during Earthquakes", Geotechnique, Vol.43, No.3, pp.351-415. https://doi.org/10.1680/geot.1993.43.3.351
  10. Ishihara, K., Acacio, A., and Towhata, I. (1993), "Liquefaction Induced Ground Damage in Dagupan in the July 16, 1990 Luzon Earthquake", Soils and Foundations, JSSMFE, Vol.33, No.1, pp. 133-154. https://doi.org/10.3208/sandf1972.33.133
  11. Jeng, D. S. (1997), "Wave-induced Seabed Response in Front of a Breakwater", PhD Thesis, The University of Western Australia.
  12. Jeng, D.S. (2008), "Effects of Wave Non-linearity on Residual Pore Pressure in Marine Sediments", The Open Civil Eng. J., Vol.2, pp.63-74. https://doi.org/10.2174/1874149500802010063
  13. Jeng, D. S. and Seymour, B. R. (2007), "Simplified Analytical Approximation for Pore-water Pressure Buildup in Marine Sediments", J. Waterway, Port, Coastal, and Ocean Eng., ASCE, Vol.133, No.4, pp.309-312. https://doi.org/10.1061/(ASCE)0733-950X(2007)133:4(309)
  14. Jeng, D. S., Seymour, B. R., and Li J. (2006), "A New Approximation for Pore Pressure Accumulation in Marine Sediment due to Water Waves", Research Report No. R868, School of Civil Engineering, University of Sydney, Sydney, Australia.
  15. Kirca, V. S. O., Sumer, B. M., and Fredsoe, J. (2013), "Residual Liquefaction of Seabed under Standing Waves", J. Waterway, Port, Coastal, and Ocean Eng., ASCE, Vol.139, pp.489-501. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000208
  16. Lee, K. H., Kim, D. S., Kim, K. H., Kim, D. W., and Shin, B. S. (2014), "Analysis Method of Partial Standing Wave-induced Seabed Responses in Finite Soil Thickness under Arbitrary Reflection", J. Korean Society of Coastal and Ocean Engineers, Vol.26, No.5, pp.300-313. https://doi.org/10.9765/KSCOE.2014.26.5.300
  17. Lee, K. H., Kim, D. W., Kim, D. S., Kim, T. H., and Kim, K. H. (2015a), "An Analytical Solution of Progressive Wave-induced Residual Pore Water Pressure in Seabed", J. Korean Society of Coastal and Ocean Engineers (in press).
  18. Lee, K. H., Kim, D. W., Kim, D. S., Kim, T. H., Shin, B. S., and Na, S. M. (2015b), "An Analytical Solution of Dynamic Responses for Seabed under Coexisting Fields of Flow and Partial Standing Wave with Arbitrary Reflection Ratio", J. Korean Geotechnical Society (under review).
  19. McDougal, W. G., Tsai, Y. T., Liu, P. L.-F., and Clukey, E. C. (1989), "Wave-induced Pore Water Pressure Accumulation in Marine Soils", J. Offshore Mechanics and Arctic Eng., Vol.111, pp.1-11. https://doi.org/10.1115/1.3257133
  20. Sassa, S. and Sekiguchi, H. (1999), "Wave-induced Liquefaction of Beds of Sand in a Centrifuge", Geotechnique, Vol.49, No.5, pp.621-638. https://doi.org/10.1680/geot.1999.49.5.621
  21. Sassa, S. and Sekiguchi, H. (2001), "Analysis of Wave-induced Liquefaction of Sand Beds", Geotechnique, Vol.51, No.2, pp.115-126. https://doi.org/10.1680/geot.2001.51.2.115
  22. Sassa, S., Sekiguchi, H., and Miyamoto, J. (2001), "Analysis of Progressive Liquefaction as a Moving Boundary Problem", Geotechnique, Vol.51, No.10, pp.847-857. https://doi.org/10.1680/geot.2001.51.10.847
  23. Sawicki, A. and Mierczynski, J. (2005), "Wave-induced Stresses and Liquefaction in Seabed According to the Biot-type Approach, Archives of Hydro-Eng. And Environmental Mechanics, Vol.52, No.2, pp.131-145.
  24. Seed, H. B. and Idriss, I. M. (1971), "Simplified Procedure for Evaluating Soil Liquefaction Potential", J. Soil Mechanics and Foundations Division, ASCE, Vol.97, No.SM9, pp.1249-1273.
  25. Seed, H. B. and Idriss, I. M. (1982), Ground motion and soil liquefaction during earthquakes, EERI Monograph, Earthquake Engineering Research Institute.
  26. Seed, H. B. and Lee, K. L. (1966), Liquefaction of saturated sands during cyclic loading, J. Soil Mechanics and Foundations Division, ASCE, 92, 105-134.
  27. Seed, H. B., Pyke, R. M., and Martin, G. R. (1978), Effects of multidirectional shaking on pore pressure development in sands, J. Geotechnical Division, ASCE, 104, 27-44.
  28. Seed, H. B. and Rahman, M. S. (1978), Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils, Marine Geotechnology, 3(2), 123-150. https://doi.org/10.1080/10641197809379798
  29. Sumer, B. M. and Cheng, N. S. (1999), A random-walk model for pore pressure accumulation in marine soils, 9th Intl. Offshore and Polar Eng. Conference, ISOPE, 521-528.
  30. Yamamoto, T., Koning, H. L., Sellmeijer, H., and Hijum, E. V. (1978), On the response of a poro-elastic bed to water waves, J. Fluid Mech., 87, 193-206. https://doi.org/10.1017/S0022112078003006
  31. Zen, K. and Yamazaki, H. (1991), Field observation and analysis of wave-induced liquefaction in seabed, Soil and Foundation, 31(4), 161-179. https://doi.org/10.3208/sandf1972.31.4_161