• 제목/요약/키워드: Finite Element-Transfer Stiffness Coefficient Method

검색결과 34건 처리시간 0.025초

전달강성계수법과 부분구조합성법을 이용한 구조물의 진동해석 (Vibration Analysis of Structures Using the Transfer Stiffness Coefficient Method and the Substructure Synthesis Method)

  • 최명수
    • 동력기계공학회지
    • /
    • 제5권4호
    • /
    • pp.24-30
    • /
    • 2001
  • The substructure synthesis method(SSM) is developed for overcoming disadvantages of the Finite Element Method(FEM). The concept of the SSM is as follows. After dividing a whole structure into several substructures, every substructures are analyzed by the FEM or experiment. The whole structure is analyzed by using connecting condition and the results of substructures. The concept of the transfer stiffness coefficient method(TSCM) is based on the transfer of the nodal stiffness coefficients which are related to force vectors and displacement vectors at each node of analytical mode1. The superiority of the TSCM to the FEM in the computation accuracy, cost and convenience was confirmed by the numerical computation results. In this paper, the author suggests an efficient vibration analysis method of structures by using the TSCM and the SSM. The trust and the validity of the present method is demonstrated through the numerical results for computation models.

  • PDF

일반 평판의 면내 진동 해석 (In-Plane Vibration Analysis of General Plates)

  • 최명수;여동준;변정환;서정주;양정규
    • 동력기계공학회지
    • /
    • 제11권4호
    • /
    • pp.78-85
    • /
    • 2007
  • In order to analyze accurately the vibration of a structure by using the finite element method (FEM), we have to model a analytical structure as a numerical model with many degrees-of-freedom. However, in this case, the FEM needs much computation time and storage. The authors developed the finite element-transfer stiffness coefficient method (FE-TSCM) for overcoming the drawback of the FEM. In this paper, the authors apply the FE-TSCM to the in-plane vibration analysis of general plates with various shapes. Two numerical examples, a rectangular plate and a triangular plate, are used to compare the results of the FE-TSCM and the FEM. Through the numerical calculation, we confirm that the FE-TSCM can be applied to the in-plane free or forced vibration analysis of the general plates with various shapes and is effective to in-plane vibration analysis of general plates.

  • PDF

Free Vibration Analysis of Axisymmetric Conical Shell

  • Choi, Myung-Soo;Yeo, Dong-Jun;Kondou, Takahiro
    • 동력기계공학회지
    • /
    • 제20권2호
    • /
    • pp.5-16
    • /
    • 2016
  • Generally, methods using transfer techniques, like the transfer matrix method and the transfer stiffness coefficient method, find natural frequencies using the sign change of frequency determinants in searching frequency region. However, these methods may omit some natural frequencies when the initial frequency interval is large. The Sylvester-transfer stiffness coefficient method ("S-TSCM") can always obtain all natural frequencies in the searching frequency region even though the initial frequency interval is large. Because the S-TSCM obtain natural frequencies using the number of natural frequencies existing under a searching frequency. In this paper, the algorithm for the free vibration analysis of axisymmetric conical shells was formulated with S-TSCM. The effectiveness of S-TSCM was verified by comparing numerical results of S-TSCM with those of other methods when analyzing free vibration in two computational models: a truncated conical shell and a complete (not truncated) conical shell.

전달강성계수법에 의한 분기형 구조물의 시긴이력응답해석 (Time Historical Response Analysis of Tree Structure by Transfer Stiffness Coefficient Method)

  • 문덕홍;강현석;최명수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.426-431
    • /
    • 1998
  • This, paper describes formulation for time historical response analysis of vibration for tree structure. This method is derived from a combination of the transfer stiffness coefficient method and the Newmark-.betha. method. And This present method improves the computational accuracy of the transient vibration response analysis remarkably owing to several advantages of the transfer stiffness coefficient method. We regarded the structure as a lumped mass system here. The analysis algorithm for the time historical response was formulated for the tree structure. The validity of the present method compared with the transfer matrix method and the FEM(Finite Element Method) for transient vibration analysis is demonstrated through the numerical computations.

  • PDF

평판의 면내 자유진동 해석 (In-Plane Free Vibration Analysis of Plates)

  • 최명수;여동준;변정환;장덕종;문덕홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.291-296
    • /
    • 2007
  • To analyze accurately the free vibration of a structure by using the finite element method (FEM), we model the structure as a numerical model with many degrees-of-freedom. However the FEM needs much computation time and storage in this case. The authors developed the finite element-transfer stiffness coefficient method (FE-TSCM) for overcoming the drawback of the FEM. In this paper, the authors apply the FE-TSCM to the in-plane free vibration analysis of plates with various shapes. Two numerical examples, a rectangular plate and a triangular plate, are used to compare the results of the FE-TSCM and the FEM. Through the numerical calculation, we confirm that the FE-TSCM can be applied to the plates with various shapes and is effective to in-plane free vibration analysis of plates.

  • PDF

일반화 전달강성계수법과 유전알고리즘을 이용한 골조구조물의 최적설계 (Optimum Design of Frame Structures Using Generalized Transfer Stiffness Coefficient Method and Genetic Algorithm)

  • 최명수
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.202-208
    • /
    • 2005
  • The genetic algorithm (GA) which is one of the popular optimum algorithm has been used to solve a variety of optimum problems. Because it need not require the gradient of objective function and is easier to find global solution than gradient-based optimum algorithm using the gradient of objective function. However optimum method using the GA and the finite element method (FEM) takes many computational time to solve the optimum structural design problem which has a great number of design variables, constraints, and system with many degrees of freedom. In order to overcome the drawback of the optimum structural design using the GA and the FEM, the author developed a computer program which can optimize frame structures by using the GA and the generalized transfer stiffness coefficient method. In order to confirm the effectiveness of the developed program, it is applied to optimum design of plane frame structures. The computational results by the developed program were compared with those of iterative design.

  • PDF

강성계수의 조합 및 전달에 의한 격자형 구조물의 자유진동 해석 (Free Vibration Analysis of Lattice Type Structures by the Combination and Transfer of Stiffness Coefficient)

  • 문덕홍;최명수;강화중;강현석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.169-175
    • /
    • 1997
  • Recently it is increased by degrees to produce complex and large lattice structures such as bridge, tower, crane, and space structures. In general, in order to analyse these structures we have used finite element method(FEM). In this method, however, it is necessary to use a large amount of computer memory and to take long computation time. For overcoming this problem, the Authors have developed the transfer dynamic stiffness coefficient method(TDSCM) which consists on the concept of the substructure synthesis method and transfer influence coefficient method. In this paper, the new free vibration analysis method for large type lattice structure is formulated by the TDSCM. And the results obtained by TDSCM are compared with those obtained by FEM, transfer matrix method and experiment. And it is confirmed for TDSCM to be the numerical high accuracy and high speed structure analysis method.

  • PDF

강성계수의 전달을 이용한 정적 감도해석 알고리즘에 관한 연구 (A Study on the Static Sensitivity Analysis Algorithm Using the Transfer of Stiffness Coefficient)

  • 최명수
    • 동력기계공학회지
    • /
    • 제5권4호
    • /
    • pp.82-89
    • /
    • 2001
  • To design a structural or a mechanical system with the best performance, the main procedure of a typical design usually consists of repeated modifications of design parameters and the investigation of the system response for each set of these parameters. But this procedure requires much time, effort and experience. Sensitivity analysis can provide systematic information for improving performance of a system. The author has studied on the development of the structural analysis algorithm and suggested recently the transfer stiffness coefficient method(TSCM). This method is very suitable algorithm to a personal computer because the concept of the TSCM is based on the transfer of the nodal stiffness coefficients which are related to force and displacement vectors at each node. In this paper, a new sensitivity analysis algorithm using the concept of the TSCM is formulated for the computation of state variable sensitivity in static problems. The trust of the proposed algorithm is confirmed through the comparison with the computation results using existent sensitivity analysis algorithm and reanalysis for computation models.

  • PDF

치차-분지계를 갖는 비틀림 축계의 설계를 위한 위험속도 계산 (Computation of Critical Speeds for Design of Torsional Shafting with Gear-Branched Systems)

  • 최명수
    • 수산해양기술연구
    • /
    • 제39권4호
    • /
    • pp.276-283
    • /
    • 2003
  • While designing a torsional shafting with various gear-branched systems, it is very important for system designers to obtain critical speeds accurately and easily. The author has studied the transfer stiffness coefficient method (TSCM) as a structural analysis algorithm. In this paper, the TSCM is applied to the computation of critical speeds for torsional shafting with gear-branched systems. The accuracy of the present method is confirmed by comparing with the results of the finite element method.

베어링 특성을 고려한 CNG 압축기의 동적 거동 및 동특성 해석 (Analysis of the Dynamic Behavior and Characteristics of the CNG Compressor Considering Bearing Characteristics)

  • 김태종
    • Tribology and Lubricants
    • /
    • 제22권6호
    • /
    • pp.342-349
    • /
    • 2006
  • In this study, a dynamic behavior of rotor-bearing system used in CNG compressor has been investigated using the combined methodologies of finite elements and transfer matrices. The finite element is formulated including the field element for a shaft section and the point element for roller bearings. The Houbolt method is used to consider the time march for the integration of the system equations. The transient whirl response of rotating shaft supported on roller bearings is obtained, considering compression forces and unbalance forces at eccentric crank-pin part. And, the steady state displacements of the rotor are compared with a variation in stiffness coefficient of roller bearings. Results show that the loci of crankshaft considering unbalance forces and external compression forces are more severe in whirl motion than with only unbalance forces.