• 제목/요약/키워드: Finite Element Mesh Approach

검색결과 139건 처리시간 0.021초

Iterative mesh partitioning strategy for improving the efficiency of parallel substructure finite element computations

  • Hsieh, Shang-Hsien;Yang, Yuan-Sen;Tsai, Po-Liang
    • Structural Engineering and Mechanics
    • /
    • 제14권1호
    • /
    • pp.57-70
    • /
    • 2002
  • This work presents an iterative mesh partitioning approach to improve the efficiency of parallel substructure finite element computations. The proposed approach employs an iterative strategy with a set of empirical rules derived from the results of numerical experiments on a number of different finite element meshes. The proposed approach also utilizes state-of-the-art partitioning techniques in its iterative partitioning kernel, a cost function to estimate the computational cost of each submesh, and a mechanism that adjusts element weights to redistribute elements among submeshes during iterative partitioning to partition a mesh into submeshes (or substructures) with balanced computational workloads. In addition, actual parallel finite element structural analyses on several test examples are presented to demonstrate the effectiveness of the approach proposed herein. The results show that the proposed approach can effectively improve the efficiency of parallel substructure finite element computations.

유한요소격자에 기초한 일반적인 금형면 묘사와 3차원 박판성형공정에의 응용 (A General Description of Tool Surface Based on Finite Element Mesh and Its Application to 3-D Sheet Forming Processes)

  • 윤정환;김종봉;양동열;김석관;유동진;이재진
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.550-559
    • /
    • 2000
  • One of the most important factor to be considered for the analysis of sheet metal forming processes is the tool surface description for arbitrarily- shaped sheet metal parts. In the present study , finite element approach is used to describe the arbitrarily shaped tool surface. In finite element mesh approach, tool surfaces ar, described by finite elements. The finite elements mesh description of the tool surface, which is originally described by CAD data, needs much time and time-consuming graphic operation. The method, however, has been widely used to describe a complex tool surface. In the present study, the contact searching algorithm for the finite element mesh approach is developed based on cell strategy method and sheet surface normal scheme. For the verification purpose, a clover cup drawing, Baden-Baden oilpan problem and a trunk floor drawing were investigated. The computational results based on the finite element approach were compared with the results of available parametric patch approach and experiments.

대변형 유한요소해석을 위한 요소망 자동 생성기법 (Automatic Quadrilateral Mesh Generation for Large Deformation Finite Element Analysis)

  • 김동준;최호준;장동환;임중연;이호용;황병복
    • 소성∙가공
    • /
    • 제12권3호
    • /
    • pp.194-201
    • /
    • 2003
  • An automatic quadrilateral mesh generator for large deformation finite element analysis such as metal forming simulation was developed. The NURBS interpolation method is used for modeling arbitrary 2-D free surface. This mesh generation technique is the modified paving algorithm, which is an advancing front technique with element-by-element resolving method for paving boundary intersection problem. The mesh density for higher analysis accuracy and less analysis time can be easily controlled with high-density points, maximum and minimum element size. A couple of application to large deformation finite element analysis is given as an example, which shows versatility and applicability of the proposed approach and the developed mesh generator for large deformation finite element analysis.

(4+n)-noded Moving Least Square(MLS)-based finite elements for mesh gradation

  • Lim, Jae Hyuk;Im, Seyoung
    • Structural Engineering and Mechanics
    • /
    • 제25권1호
    • /
    • pp.91-106
    • /
    • 2007
  • A new class of finite elements is described for dealing with mesh gradation. The approach employs the moving least square (MLS) scheme to devise a class of elements with an arbitrary number of nodal points on the parental domain. This approach generally leads to elements with rational shape functions, which significantly extends the function space of the conventional finite element method. With a special choice of the nodal points and the base functions, the method results in useful elements with polynomial shape functions for which the $C^1$ continuity breaks down across the boundaries between the subdomains comprising one element. Among those, (4 + n)-noded MLS based finite elements possess the generality to be connected with an arbitrary number of linear elements at a side of a given element. It enables us to connect one finite element with a few finite elements without complex remeshing. The effectiveness of the new elements is demonstrated via appropriate numerical examples.

Mesh Simplification and Adaptive LOD for Finite Element Mesh Generation

  • Date, Hiroaki;Kanai, Satoshi;Kishinami, Takeshi;Nishigaki, Ichiro
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.73-79
    • /
    • 2006
  • In this paper, we propose a new triangular finite element mesh generation method based on simplification of high-density mesh and adaptive Level-of-Detail (LOD) methods for efficient CAE. In our method, mesh simplification is used to control the mesh properties required for FE mesh, such as the number of triangular elements, element shape quality and size while keeping the specified approximation tolerance. Adaptive LOD methods based on vertex hierarchy according to curvature and region of interest, and global LOD method preserving density distributions are also proposed in order to construct a mesh more appropriate for CAE purpose. These methods enable efficient generation of FE meshes with properties appropriate for analysis purpose from a high-density mesh. Finally, the effectiveness of our approach is shown through evaluations of the FE meshes for practical use.

박판성형해석을 위한 자동 툴 격자 생성에 관한 연구 (Investigation on the Automatic Tool Mesh Generatio for Sheet Metal Stamping Analysis)

  • 유동진
    • 소성∙가공
    • /
    • 제9권2호
    • /
    • pp.140-151
    • /
    • 2000
  • The finite element mesh approach for tool surface description is applied effectively to analyze sheet metal stamping processes. To improve the mesh quality and the stability of the mesh generation process, a gybrid method based on the grid approach and the Delaunay triangulation is proposed in the present work. In the present study, a general method for the mathematical description of arbitrarily shaped tool surface is proposed by introducing the parametric surface approach. A polynomial function employed to describe the base parametric surface and the boundary curves are defined to describe arbitrary three-dimensional trimmed surfaces. To verify the validity of the proposed method, automatic mesh generation is carried out for some shosen complicated parts including actual automotive panel.

  • PDF

적층복합재료 및 샌드위치 판의 적응해석 (Adaptive Analysis of Multilayered Composite and Sandwich Plates)

  • 박진우;김용협
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.224-227
    • /
    • 2001
  • Adaptive analysis of multilayered composite and sandwich plates is carried out. The adaptive analysis is based on a finite element error form, which measures the difference between the through-the-thickness distribution of finite element displacement and the actual displacement. The region where the error-measure exceeds the prescribed admitted error value, the finite element mesh locally refined in the thickness direction using the mesh superposition technique. Several numerical tests are conducted to validate the effectiveness of the current approach for adaptive analysis of laminated plates.

  • PDF

h-분할법에 의한 사각형 유한요소망의 적응적 구성 (An Adaptive Construction of Quadrilateral Finite Elements Using H-Refinement)

  • 채수원
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.2932-2943
    • /
    • 1994
  • An efficient approach to the automatic construction of effective quadrilateral finite element meshes for two-dimensional analysis is presented. The procedure is composed of, firstly, an initial mesh generation and, secondly, an h-version of adaptive refinement based on error analysis. As for an initial mesh generation scheme, a modified looping algorithm has been employed. For the adaptive refinement process, an error indicator obtained by computing the residual error of the equilibrium equations in the energy norm with a relaxation factor has been employed. Examples of mesh generation and self-adaptive mesh improvements are given. These example solutions demonstrate that an effective mesh for a given error tolerance can be obtained in a few steps of the analysis processes.

h-법에 의한 순응형 유한요소 재분할에 관한 연구 (A Study on Adaptive Mesh Generation for the Finite Element Method using h-Method)

  • 장창두;김병일
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.39-44
    • /
    • 1992
  • This paper proposes a method of h-type adaptive mesh generation for the finite element analysis of two dimensional elasticity problem. The error energy norm of a posteriori error estimation is difined based on the complementary energy of each element. Computer codes are developed and some examples are investigated. It is shown that the approach to the optimized mesh in this paper is effective and useful.

  • PDF

Advanced Design Environmental With Adaptive And Knowledge-Based Finite Elements

  • Haghighi, Kamyar;Jang, Eun
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.1222-1229
    • /
    • 1993
  • An advanced design environment , which is based on adaptive and knowledge -based finite elements (INTELMESH), has been developed. Unlike other approaches, INTEMMESH incorporates the information about the object geometry as well as the boundary and loading conditions to generate an ${\alpha}$-priori finite element mesh which is more refined around the critical regions of the problem domain. INTEMMESH is designed for planar domains and axisymmetric 3-D structures of elasticity and heat transfer subjected to mechanical and thermal loading . It intelligently identifies the critical regions/points in the problem domain and utilize the new concepts of substructuring and wave propagation to choose the proper mesh size for them. INTEMMESH generates well-shaped triangular elements by applying trangulartion and Laplacian smoothing procedures. The adaptive analysis involves the intial finite elements analyze and an efficient ${\alpha}$-posteriori error analysis involves the initial finite element anal sis and an efficient ${\alpha}$-posteriori error analysis and estimation . Once a problem is defined , the system automatically builds a finite element model and analyzes the problem though automatic iterative process until the error reaches a desired level. It has been shown that the proposed approach which initiates the process with an ${\alpha}$-priori, and near optimum mesh of the object , converges to the desired accuracy in less time and at less cost. Such an advanced design/analysis environment will provide the capability for rapid product development and reducing the design cycle time and cost.

  • PDF