• 제목/요약/키워드: Finite Element Analysis Modeling

검색결과 1,558건 처리시간 0.025초

Computationally efficient 3D finite element modeling of RC structures

  • Markou, George;Papadrakakis, Manolis
    • Computers and Concrete
    • /
    • 제12권4호
    • /
    • pp.443-498
    • /
    • 2013
  • A detailed finite element modeling is presented for the simulation of the nonlinear behavior of reinforced concrete structures which manages to predict the nonlinear behavior of four different experimental setups with computational efficiency, robustness and accuracy. The proposed modeling method uses 8-node hexahedral isoparametric elements for the discretization of concrete. Steel rebars may have any orientation inside the solid concrete elements allowing the simulation of longitudinal as well as transverse reinforcement. Concrete cracking is treated with the smeared crack approach, while steel reinforcement is modeled with the natural beam-column flexibility-based element that takes into consideration shear and bending stiffness. The performance of the proposed modeling is demonstrated by comparing the numerical predictions with existing experimental and numerical results in the literature as well as with those of a commercial code. The results show that the proposed refined simulation predicts accurately the nonlinear inelastic behavior of reinforced concrete structures achieving numerical robustness and computational efficiency.

Virtual Modeling Data와 비선형 해석 프로그램의 Interface 설계 (Interface Design of Virtual Modeling Dataand Nonlinear Analysis Program)

  • 박재근;이헌민;조성훈;이광명;신현목
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.100-103
    • /
    • 2008
  • Recently Development of construction system that subjective operators share and control information efficiently based on the three-dimensional space and design information throughout life cycle of construction project is progressing dynamically. In case of civil structures which are infrastructure, Demand for structure of complex system which has multi-functions such as super and smart bridges and express rails is increasing and system development which computerizes and integrates process of structure design is in need. For that, research about link way between three dimensional modeling data and structure analysis programs should be preceded. In this research, therefore, research about interface design between three dimensional virtual modeling data to automate efficient civil-structure-design and nonlinear finite element analysis program which is made up of reinforced concrete material model that express material's character clearly.

  • PDF

Nonlinear finite element analysis of slender RC columns strengthened with FRP sheets using different patterns

  • El-Kholy, Ahmed M.;Osman, Ahmed O.;EL-Sayed, Alaa A.
    • Computers and Concrete
    • /
    • 제29권4호
    • /
    • pp.219-235
    • /
    • 2022
  • Strengthening slender reinforced concrete (RC) columns is a challenge. They are susceptible to overall buckling that induces bending moment and axial compression. This study presents the precise three-dimensional finite element modeling of slender RC columns strengthened with fiber-reinforced polymer (FRP) composites sheets with various patterns under concentric or eccentric compression. The slenderness ratio λ (height/width ratio) of the studied columns ranged from 15 to 35. First, to determine the optimal modeling procedure, nine alternative nonlinear finite element models were presented to simulate the experimental behavior of seven FRP-strengthened slender RC columns under eccentric compression. The models simulated concrete behavior under compression and tension, FRP laminate sheets with different fiber orientations, crack propagation, FRP-concrete interface, and eccentric compression. Then, the validated modeling procedure was applied to simulate 58 FRP-strengthened slender RC columns under compression with minor eccentricity to represent the inevitable geometric imperfections. The simulated columns showed two cross sections (square and rectangular), variable λ values (15, 22, and 35), and four strengthening patterns for FRP sheet layers (hoop H, longitudinal L, partial longitudinal Lw, and longitudinal coupled with hoop LH). For λ=15-22, pattern L showed the highest strengthening effectiveness, pattern Lw showed brittle failure, steel reinforcement bars exhibited compressive yielding, ties exhibited tensile yielding, and concrete failed under compression. For λ>22, pattern Lw outperformed pattern L in terms of the strengthening effectiveness relative to equivalent weight of FRP layers, steel reinforcement bars exhibited crossover tensile strain, and concrete failed under tension. Patterns H and LH (compared with pattern L) showed minor strengthening effectiveness.

저밀도 폴리우레탄 포옴재료의 유한요소 모델링 (Finite Element Modeling of Low Density Polyurethane Foam Material)

  • 김원택;최형연
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.183-188
    • /
    • 1996
  • The compressive stress-strain response of Low Density Polyurethane foam material is modeled using the finite element method. A constitutive equation which include experimental constants based on quasi-static and dynamic uniaxial compression test is proposed. Impact test with different impactor masses and velocities are performed to verify the proposed model. The comparison between impact test and finite element analysis shows good agreements.

  • PDF

Ultimate load behavior of horizontally curved composite plate girders

  • Shanmugam, N.E.;Basher, M.A.;Khalim, A.R.
    • Steel and Composite Structures
    • /
    • 제9권4호
    • /
    • pp.325-348
    • /
    • 2009
  • This paper is concerned with steel-concrete composite plate girders curved in plan. At the design stage these girders are assumed sometimes to act independent of the deck slabs resting on them in order to simplify the analysis. The advantage of composite action between the steel girders and concrete deck is not utilized. Finite element modeling of such composite action in plate girders is considered in this paper. Details of the finite element modeling and the non-linear analysis of the girders are presented along with the results obtained. Tension field action in the web panels similar to those observed in the straight plate girders is also noticed in these girders. Finite element and experimental results in respect of curved steel plate girders and straight composite plate girders tested by other researchers are presented first to assess the accuracy of the modeling. Effects of parameters such as curvature, steel flange width and web panel width that affect the behavior of composite girders are then considered in the analyses. An approximate method to predict the ultimate strength of horizontally curved composite plate girders is also presented.

유한요소해석 기반 휨 및 전단 파괴형 철근콘크리트 기둥의 폭발 성능평가 (Blast Performance Evaluation based on Finite Element Analysis for Reinforced Concrete Columns with Shear and Flexure Failure Modes)

  • 김예은;;이기학;신지욱
    • 한국전산구조공학회논문집
    • /
    • 제36권5호
    • /
    • pp.307-314
    • /
    • 2023
  • 본 논문에서는 유한요소해석 프로그램을 통해 파괴 거동 유형별 철근콘크리트 기둥 및 폭발 하중을 모델링하였으며, 실제 실험과의 동적 응답을 비교하여 모델의 적합성을 입증하였다. 개발한 모델을 이용하여 폭발 하중에 대한 부재의 동적 응답을 확인하기 위해 폭발 하중 시나리오를 설정하였으며 해당 시나리오별 폭발 하중에 대한 시간에 따른 변위 및 응력 결과를 도출하였다. 동적 응답을 통해 폭발 하중에 대한 기둥의 성능평가(Ductility, Residual)를 수행하였으며 이를 비교 및 분석하였다.

유한요소-전달강성계수법에 의한 이산계 곡선보의 자유진동해석 (Free Vibration Analysis of Curved Beams Regarded as Discrete System Using Finite Element-Transfer Stiffness Coefficient Method)

  • 최명수;여동준
    • 동력기계공학회지
    • /
    • 제21권1호
    • /
    • pp.37-42
    • /
    • 2017
  • A curved beam is one of the basic and important structural elements in structural design. In this paper, the authors formulated the computational algorithm for analyzing the free vibration of curved beams using the finite element-transfer stiffness coefficient method. The concept of the finite element-transfer stiffness coefficient method is the combination of the modeling technique of the finite element method and the transfer technique of the transfer stiffness coefficient method. And, we confirm the effectiveness the finite element-transfer stiffness coefficient method from the free vibration analysis of two numerical models which are a semicircle beam and a quarter circle beam.

Enhanced finite element modeling for geometric non-linear analysis of cable-supported structures

  • Song, Myung-Kwan;Kim, Sun-Hoon;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • 제22권5호
    • /
    • pp.575-597
    • /
    • 2006
  • Enhanced three-dimensional finite elements for geometrically nonlinear analysis of cable-supported structures are presented. The cable element, derived by using the concept of an equivalent modulus of elasticity and assuming the deflection curve of a cable as catenary function, is proposed to model the cables. The stability functions for a frame member are modified to obtain a numerically stable solution. Various numerical examples are solved to illustrate the versatility and efficiency of the proposed finite element model. It is shown that the finite elements proposed in this study can be very useful for geometrically nonlinear analysis as well as free vibration analysis of three-dimensional cable-supported structures.

곡면 구조물 통합 설계를 위한 쉘 해석과 곡면 모델링의 연동 개요 (The outline of a Link between Shell Analysis and Surface Modeling for Surface Structural Integrated Design)

  • 노희열;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.295-302
    • /
    • 2001
  • In the present study, we propose the framework which directly links shell finite element to the surface geometric modeling. For the development of a robust shell element, partial mixed variational functional is provided. The NURBS is used to generate the general free form of parameterized shell surfaces. Employment of NURBS makes shell finite element handle the arbitrary geometry of the smooth shell surfaces. The proposed shell finite element model linked with NURBS surface representation provides efficiency for design and analysis and can be directly extended to surface shape optimization problems in future work.

  • PDF

SOME RECENT TOPICS IN COMPUTATIONAL MATHEMATICS - FINITE ELEMENT METHODS

  • Park, Eun-Jae
    • Korean Journal of Mathematics
    • /
    • 제13권2호
    • /
    • pp.127-137
    • /
    • 2005
  • The objective of numerical analysis is to devise and analyze efficient algorithms or numerical methods for equations arising in mathematical modeling for science and engineering. In this article, we present some recent topics in computational mathematics, specially in the finite element method and overview the development of the mixed finite element method in the context of second order elliptic and parabolic problems. Multiscale methods such as MsFEM, HMM, and VMsM are included.

  • PDF