• 제목/요약/키워드: Finite Element Analyses

Search Result 2,418, Processing Time 0.024 seconds

Numerical Analysis of Infiltration in Permeable Pavement System considering Unsaturated Characteristics (불포화 특성을 고려한 투수성 포장 시스템의 침투성 수치해석)

  • Kim, Seungbae;Ahn, Jaehun;Teodosio, Bertrand;Shin, Hyunjun
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.3
    • /
    • pp.318-328
    • /
    • 2015
  • Effective urban flood reduction and restoration of natural water cycle at present include the application of permeable pavements. The application of permeable pavement addresses urban water cycle and disaster related events which gained attention internationally. However, few researches have been conducted to investigate unsaturated behavior and evaluate the water characteristics curves of these type of pavement materials most especially in the unsaturated state. In this study, first the saturated permeability and the soil-water characteristics curve of a pervious concrete are evaluated based on laboratory tests, and, based on experimental results, the infiltration of permeable pavement system is numerically modelled. In the soil-water characteristics curve of a pervious concrete, the volumetric water content drops very steeply after the air entry value with increasing matric suction. From the finite element analyses, the performance of the permeable pavement when compared to impermeable pavement, confirmed that the whole system effectively delayed and reduced runoff.

Reliability Assessment Based on an Improved Response Surface Method (개선된 응답면기법에 의한 신뢰성 평가)

  • Cho, Tae Jun;Kim, Lee Hyeon;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.21-31
    • /
    • 2008
  • response surface method (RSM) is widely used to evaluate th e extremely smal probability of ocurence or toanalyze the reliability of very complicated structures. Althoug h Monte-Carlo Simulation (MCS) technique can evaluate any system, the procesing time of MCS dependson the reciprocal num ber of the probability of failure. The stochastic finite element method could solve thislimitation. However, it is limit ed to the specific program, in which the mean and coeficient o f random variables are programed by a perturbation or by a weigh ted integral method. Therefore, it is not aplicable when erequisite programing. In a few number of stage analyses, RSM can construct a regresion model from the response of the c omplicated structural system, thus, saving time and efort significantly. However, the acuracy of RSM depends on the dist ance of the axial points and on the linearity of the limit stat e functions. To improve the convergence in exact solution regardl es of the linearity limit of state functions, an improved adaptive response surface method is developed. The analyzed res ults have ben verified using linear and quadratic forms of response surface functions in two examples. As a result, the be st combination of the improved RSM techniques is determined and programed in a numerical code. The developed linear adapti ve weighted response surface method (LAW-RSM) shows the closest converged reliability indices, compared with quadratic form or non-adaptive or non-weighted RSMs.

Crack Growth Analysis due to PWSCC in Dissimilar Metal Butt Weld for Reactor Piping Considering Hydrostatic and Normal Operating Conditions (수압시험 및 정상운전 하중을 고려한 원자로 배관 이종금속 맞대기 용접부 응력부식균열 성장 해석)

  • Lee, Hwee-Sueng;Huh, Nam-Su;Lee, Seung-Gun;Park, Heung-Bae;Lee, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.47-54
    • /
    • 2013
  • This study investigates the crack growth behavior due to primary water stress corrosion cracking (PWSCC) in the dissimilar metal butt weld of a reactor piping using Alloy 82/182. First, detailed finite element stress analyses were performed to predict the stress distribution of the dissimilar metal butt weld in which the hydrostatic and the normal operating loads as well as the weld residual stresses were considered to evaluate the stress redistribution due to mechanical loadings. Based on the stress distributions along the wall thickness of the dissimilar metal butt weld, the crack growth behavior of the postulated axial and circumferential cracks were predicted, from which the crack growth diagram due to PWSCC was proposed. The present results can be applied to predict the crack growth rate in the dissimilar metal butt weld of reactor piping due to PWSCC.

Estimation of Permanent Displacement of Gravity Quay Wall Considering Failure Surface under Seismic Loading (지진 시 파괴면을 고려한 중력식 안벽의 영구변위 평가)

  • Han, Insuk;Ahn, Jae-Kwang;Park, Duhee;Kwon, Osoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.4
    • /
    • pp.15-26
    • /
    • 2019
  • The stability of the gravity quay wall against earthquakes is evaluated on the basis of the allowable displacement of the wall. To estimate the displacement caused by external forces, empirical equations based on the Newmark sliding block method or numerical analysis are widely used. In numerical analysis, it is possible to analyze precisely a complicated site and structure, but difficult to set the appropriate parameters and environments; there are limitations in obtaining reliable results, depending on one's level of expertise. The Newmark method, with only seismic motions, is widely used because it is simpler than numerical simulations when estimating permanent displacement. However, the empirical equations do not have any parameters for the response characteristics and sliding block of the structure, and sliding blocks being assumed as rigid bodies does not consider the nonlinear behavior of the soil and interaction with the structure. Therefore, in order to evaluate the seismic stability of the gravity quay wall, a newly-developed empirical equation is needed to overcome the above-mentioned limitations. In this study, numerical simulations are performed to analyze the response characteristics of the backfill of the structure, and to propose an optimal method of calculating the active area. For this purpose, finite element analyses were performed to analyze the response characteristics, and stress-strain relationships for various seismic motions. As a result, the response characteristics, sliding block, and failure surface of the backfill vary depending on the input seismic motions.

A Study on Performance of Steel Monocell Expansion Joints (강재형 모노셀 신축이음장치 성능 연구)

  • Kim, Yong-Hoon;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.502-509
    • /
    • 2019
  • Studies have been made on performance evaluation of expansion joint systems for an ordinary highway or road bridge. However little study has been made for runway connection bridges at airports. A study on performance evaluated from computer code analysis and shrinkage, extension, and compression repetition tests based on KS F 4425 is conducted to a newly developed expansion joint system which has been installed in a runway connection bridge at Incheon Airport Extension 2 Construction Site. The MIDAS computer code is used to analyze the performance before the manufacture of the mock-up of expansion joint system on the basis of design requirements. Tests based on the KS F 4425 of 2001 year-version are conducted for the mock-up. Domestic codes and standards to validate the performance of the expansion joint system in a connection bridge have been developed for a vehicle. However the expansion joint system tested in this study is installed in a runway connection bridge for an aircraft. Conservatively the heaviest one among airplanes departing and landing at Incheon Airport is assumed level-F $468.4kN/m^2$ and adopted for the tests and analyses in this study. KS F 4425 method is selected for the shrinkage, extension, and compression repetition tests. No remarkable problem was observed for the 2,500-cycle shrinkage and extension and two million-cycle repeatition load tests. The results of this study are expected to contribute to establishment of code and standard for the performance validation of an expansion joint system installed in a runway connection bridge for an aircraft by providing performance test results and computer analysis results based on finite element methods.

Evaluation of Optimum Spacing between Anchor Bodies of Distributive Compression Anchor Using Numerical Simulation (수치해석을 이용한 압축 분산형 앵커의 내하체 최적 간격 산정)

  • Gu, Kyo-Young;Shin, Gyu-Bum;Chung, Choong-Ki;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.7
    • /
    • pp.29-39
    • /
    • 2019
  • Load distributive compression anchors distribute the compressive stress in the grout and increase the pull-out capacity of the anchor by using multiple anchor bodies. In this anchor type, the spacing between the anchor bodies has a large influence on the stress in the grout. However, there are few researches about the spacing and there are no design standards. Therefore, the effect of the anchor body spacing on the grout stress was analyzed by performing finite element analyses. First, the applicability of the numerical modeling was verified by comparing with field test results of a compression anchor. Then, the parametric study was performed varying soil type, anchor body spacing, and load magnitude. The analysis results showed that the maximum compressive stress in the grout increased at the narrower spacing and the tensile stress developed at the wider spacing. Therefore, the optimum spacing was defined as the spacing, which prevents the superposition of compressive stresses and minimize the tensile stress. Finally, the optimum spacing was proposed according to the soil type and the load magnitude.

A Numerical Analysis Study for Estimation of Ultimate Bearing Capacity and An Analysis of the High Capacity Bi-directional Pile Load Tests of the Large-diameter Drilled Shafts (대구경 현장타설말뚝의 대용량 양방향 말뚝재하시험 분석 및 극한지지력 추정을 위한 수치해석 연구)

  • Nam, Moonsuk;Kim, Sangil;Hong, Seokwoo;Hwang, Seongchun;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.63-72
    • /
    • 2011
  • The high capacity bi-directional pile load test is an optimum pile load test method for high-rised buildings. Especially, a high pressure and double-acting bi-directional pile load testing, a special type of the high capacity bi-directional pile load test, is the most practical way to overcome limitations of loading capacities and constraints of field conditions, which was judged to be a very useful test method for requiring high loading capacities. Total of 2 high capacity bi-directional pile load tests(P-1 and P-2) were conducted in high-rised building sites in Korea. Based on the field load test results, the sufficiency ratio of loading capacities to design loads for P-1 and P-2 were 3.3 and 2.1, respectively. For P-2, the load test could not verify the design load if 1-directional loads applied slightly smaller than the actual applied load. Also, high capacity bi-directional pile load tests were difficult to determine an ultimate state of ground or piles, although the loads were applied until their maximum loads. Hence, finite element analyses were conducted to determine their ultimate states by calibrating and extrapolate with test results.

A study on platform-based preliminary design guidelines associated with the behaviour of piles to adjacent tunnelling (터널근접시공에 의한 말뚝의 거동을 고려한 플랫폼 기반의 예비 설계 가이드라인에 대한 연구)

  • Jeon, Young-Jin;Lee, Gyu-Seol;Lee, Jae-Cheol;Batbuyan, Chinzorig;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.129-151
    • /
    • 2022
  • In the current work, a series of three-dimensional finite element analyses have been carried out to understand the behaviour of piles when the adjacent tunnelling passes underneath grouped piles with a reinforced pile cap. In the current study, the numerical analysis studied the computed results regarding the ground reinforcement condition between the tunnel and pile foundation. In addition, several key issues, such as the pile settlements, the axial pile forces, the shear stresses and the relative displacements have been thoroughly analysed, and the IoT platform based preliminary design guidelines were also presented. The pile head settlements of the nearest pile from the tunnel without the ground reinforcement increased by about 70% compared to the farthest pile from the tunnel with the maximum level of reinforcement. The quality management factor data of the piles were provided as API (Application Programming Interface) of various forms by the collection and refinement. Hence it has been shown that it would be important to provide the appropriate API by defining the each of data flow process when the data were created. The behaviour of the grouped piles with the pile cap, depending on the amount of ground reinforcement, has been extensively analysed, and the IoT platform regarding the quality management of piles has been suggested.

Mechanical Characteristics of 3-dimensional Woven Composite Stiffened Panel (3차원으로 직조된 복합재 보강 패널의 기계적 특성 연구)

  • Jeong, Jae-Hyeong;Hong, So-Mang;Byun, Joon-Hyung;Nam, Young-Woo;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.269-276
    • /
    • 2022
  • In this paper, a composite stiffened panel was fabricated using a three-dimensional weaving method that can reduce the risk of delamination, and mechanical properties such as buckling load and natural frequency were investigated. The preform of the stringer and skin of the stiffened panel were fabricated in one piece using T800 grade carbon fiber and then, resin (EP2400) was injected into the preform. The compression test and natural frequency measurement were performed for the stiffened panel, and the results were compared with the finite element analyses. In order to compare the performance of 3D weaving structures, the stiffened panels with the same configuration were fabricated using UD and 2D plain weave (fabric) prepregs. Compared to the tested buckling load of the 3D woven panel, the buckling loads of the stiffened panels of UD prepreg and 2D plain weave exhibited +20% and -3% differences, respectively. From this study, it was confirmed that the buckling load of the stiffened panel manufactured by 3D weaving method was lower than that of the UD prepreg panel, but showed a slightly higher value than that of the 2D plain weave panel.

Design Optimization to achieve an enhanced flatness of a Lab-on-a-Disc for liquid biopsy (액체생검용 Lab-on-a-Disc의 평탄도 향상을 위한 최적화)

  • Seokkwan Hong;Jeong-Won Lee;Taek Yong Hwang;Sung-Hun Lee;Kyung-Tae Kim;Tae Gon Kang;Chul Jin Hwang
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.20-26
    • /
    • 2023
  • Lab-on-a-disc is a circular disc shape of cartridge that can be used for blood-based liquid biopsy to diagnose an early stage of cancer. Currently, liquid biopsies are regarded as a time-consuming process, and require sophisticated skills to precisely separate cell-free DNA (cfDNA) and circulating tumor cells (CTCs) floating in the bloodstream for accurate diagnosis. However, by applying the lab-on-a-disc to liquid biopsy, the entire process can be operated automatically. To do so, the lab-on-a-disc should be designed to prevent blood leakage during the centrifugation, transport, and dilution of blood inside the lab-on-a-disc in the process of liquid biopsy. In this study, the main components of lab-on-a-disc for liquid biopsy are fabricated by injection molding for mass production, and ultrasonic welding is employed to ensure the bonding strength between the components. To guarantee accurate ultrasonic welding, the flatness of the components is optimized numerically by using the response surface methodology with four main injection molding processing parameters, including the mold & resin temperatures, the injection speed, and the packing pressure. The 27 times finite element analyses using Moldflow® reveal that the injection time and the packing pressure are the critical factors affecting the flatness of the components with an optimal set of values for all four processing parameters. To further improve the flatness of the lab-on-a-disc components for stable mass production, a quarter-disc shape of lab-on-a-disc with a radius of 75 mm is used instead of a full circular shape of the disc, and this significantly decreases the standard deviation of flatness to 30% due to the reduced overall length of the injection molded components by one-half. Moreover, it is also beneficial to use a quarter disc shape to manage the deviation of flatness under 3 sigma limits.

  • PDF