DOI QR코드

DOI QR Code

Numerical Analysis of Infiltration in Permeable Pavement System considering Unsaturated Characteristics

불포화 특성을 고려한 투수성 포장 시스템의 침투성 수치해석

  • Kim, Seungbae (School of Urban, Architecture and Civil Engineering, Pusan National University) ;
  • Ahn, Jaehun (School of Urban, Architecture and Civil Engineering, Pusan National University) ;
  • Teodosio, Bertrand (School of Urban, Architecture and Civil Engineering, Pusan National University) ;
  • Shin, Hyunjun (Department of Architecture, Hannam University)
  • Received : 2014.09.24
  • Accepted : 2015.04.10
  • Published : 2015.09.30

Abstract

Effective urban flood reduction and restoration of natural water cycle at present include the application of permeable pavements. The application of permeable pavement addresses urban water cycle and disaster related events which gained attention internationally. However, few researches have been conducted to investigate unsaturated behavior and evaluate the water characteristics curves of these type of pavement materials most especially in the unsaturated state. In this study, first the saturated permeability and the soil-water characteristics curve of a pervious concrete are evaluated based on laboratory tests, and, based on experimental results, the infiltration of permeable pavement system is numerically modelled. In the soil-water characteristics curve of a pervious concrete, the volumetric water content drops very steeply after the air entry value with increasing matric suction. From the finite element analyses, the performance of the permeable pavement when compared to impermeable pavement, confirmed that the whole system effectively delayed and reduced runoff.

효과적인 도심 홍수 감소 및 물순환 기법 중 하나로 투수성 포장의 적용을 들 수 있다. 도심 물순환 및 방재를 위한 수단으로 투수성 포장의 적용은 국제적으로 점차 확대되고 있는 실정이다. 투수성 포장 내의 침투는 대부분의 경우 불포화 상태에서 시작하나, 현재 투수성 포장재의 흙-수분특성 곡선의 산정 및 이를 바탕으로 한 투수성 포장 시스템의 침투성에 대한 연구는 거의 찾아볼 수 없다. 본 연구에서는, 먼저 실내시험을 통해 투수성 포장재의 포화투수계수와 흙-수분특성곡선을 산정하고, 이를 바탕으로 유한요소해석을 통해 강우시 특정 투수성 포장 시스템의 침투특성 및 홍수 저감 효과를 분석하는 것을 그 목적으로 한다. 실험에 사용된 현장 투수성 콘크리트 시료의 흙-수분특성곡선은, 모관흡입력이 증가함에 따라 공기 유입 후 체적함수비가 상대적으로 급격하게 감소하였다. 유한요소해석 결과로부터, 불투수성 포장과 비교하였을 때, 즉 강우가 침투 없이 바로 유출이 되는 경우와 비교하여, 투수성 포장 시스템의 노반으로 침투가 불가능한 경우에도, 투수성 포장 시스템이 강우의 지표유출을 효과적으로 지체 및 감소시키는 것을 확인하였다.

Keywords

References

  1. ACI Committee 522(2010). Report on pervious concrete, American concrete institute. Miami, US.
  2. Ahn, J.H., Lee, Y.S., Vaidya, S., Kim, J.H. and Lee, S.W. (2013). "Estimation the Porosity of Pervious Concretes based on X-Ray CT and Submerged Weight." Journal of the Korean Society Hazard Mitigation, Vol.13, No.4, pp.77-81. https://doi.org/10.9798/KOSHAM.2013.13.4.077
  3. Ba M., Nokkaew K., Fall M. and Tinjum J. (2013). "Effect of Matric Suction on Resilient Modulus of Compacted Aggregate Base Courses." Geotechnical and Geological Engineering, Vol.31, Issue 5, pp.1497-1510. https://doi.org/10.1007/s10706-013-9674-y
  4. Brooks, R.H. and Corey, A.T. (1964). Hydraulic properties of porous media, Colorado State University Hydrology paper, No.3, Colorado, US.
  5. Campbell, J.D. (1973). Pore pressures and volume changes in unsaturated soils. Ph.D. Thesis, University of Illinois, US.
  6. Darcy, H. (1856). Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris.
  7. Fredlund, D.G. and Xing, A. (1994). "Equations for the soil-water characteristic curve." Canadian Geotechnical Journal, Vol.31, No.3, pp.521-532. https://doi.org/10.1139/t94-061
  8. Fredlund, D.G., Rahardjo, H. and Fredlund M.D. (2012). Unsaturated Soil Mechanics in Engineering Practice, John Wiley & Sons, New Jersy, US.
  9. GCTS (2014). www.gcts.com
  10. GL E&C (2012). Personal Communication, www.glenc.co.kr.
  11. Green, W.H. and Ampt, G.A. (1911). "Studies on soil physics: 1. the flow of air and water through soils." Journal of Agricultural Science, Vol.4, No.1, pp.1-24. https://doi.org/10.1017/S0021859600001441
  12. Horton, R.E. (1933). "The role of infiltration in the hydrologic cycle." American Geophysical Union 14th, US, pp.446-460.
  13. Hunt, W.F. (2009). Urban Waterways Maintaining Permeable Pavements, North Carolina State University, North Carolina Cooperative Extension.
  14. Kim, K.W., Kim, B.J. and Park, J.J. (2008). "A Study of Stability Analysis on Unsaturated Soil Slopes Considering Rainfall." Journal of the Korean Geosynthetics Society, Vol.7, No.4, pp.9-18.
  15. Klenzendorf J.B., Charbeneau R.J. and Barrett M.E. (2010). Hydraulic Conductivity Measurement of Permeable Friction Course (PFC) Experiencing Two-Dimensional Nonlinear Flow Effects, Technical Report 10-01, Center for Research in Water Resources, The University of Texas at Austin, Texas, US.
  16. KS F 2322 (2000). Test methods for permeability of saturated soils, Korean Industrial Standards.
  17. Lee, Y.S. (2013). Estimation the Porosity of Pervious Concretes. Master's Thesis, Pusan National University, Busan
  18. Leming, L.M., Malcom, R.H. and Paul, D.T. (2007). Hydrologic design of pervious concrete, Portland Cement Association, Illinois, US, ISBN.978-0-89312-255-3 EB303.
  19. Lim, B.K. and Kim, Y.T. (2012). Personal Communication.
  20. Mein, R.G. and Larson, C.L. (1973). "Modeling infiltration during a steady rain." Journal of Water Resources Research, Vol.9, No.2, pp.384-394. https://doi.org/10.1029/WR009i002p00384
  21. Montes, F., Valavala, S. and Haselbach, M.L. (2005). "A New test method for porosity measurements of portland cement pervious concrete." Journal of ASTM International, Vol.2, No.1.
  22. Neithalath, N., Weiss, J. and Olek, J. (2006). "Characterizing enhanced porosity concrete using electrical impedance to predict acoustic and hydraulic performance." Cement and Concrete Research, Vol.36, No.11, pp.2074-2085. https://doi.org/10.1016/j.cemconres.2006.09.001
  23. Piller M., Schena G., Nolich M., Favretto S., Radaelli F. and Rossi E. (2009). "Analysis of Hyudraulic Permeability in Porous Media: From High Resolution X-ray Tomography to Direct Numerical Simulation." Transp Porous Media 80, pp.57-78 https://doi.org/10.1007/s11242-009-9338-9
  24. Ponce, V.M. and Hawkins, R.H. (1996). "Runoff Curve Number: Has It Reached Maturity?." Journal Of Hydrologic Engineering, Vol.1, No.1.
  25. Song, Y.S. (2013). "Estimation on Unsaturated Hydraulic Conductivity Function of Jumoonjin Sand for Various Relative Densities." Journal of the Korean Society of Civil Engineers, Vol.33, No.6, pp.2369-2379. https://doi.org/10.12652/Ksce.2013.33.6.2369
  26. SVFLUX (2013). User's manual, SoilVision System Ltd., Canada 2005.
  27. Takahashi S., Toda K., Kikuchi Y., Sugano T., Kuriyama Y. and Yamazaki H. (2011). "Urgent Survey for 2011 Great East Japan Earthquake and Tsunami Disaster in Ports and Coasts." Technical Note of The Port and Airport Research Institute, ISBN.1346-7840.
  28. Tennis, P.D., Leming, M.L., and Akers, D.J. (2004). Pervious Concrete Pavements. Portland Concrete Association, Illinois, US; National Ready Mixed Concrete Association, Illinois, US, ISBN.0-89312-242-4 EB302.02
  29. Thelen, E. and Howe, L.F. (1978). Porous pavement - including the principles of development and a porous pavement design manual. First Edition, The Franklin Institute Press, Philadelphia, US.
  30. Thode, R. and Fredlund, M. (2013). SVFlux Tutorial Manual, Saskatchewan, Canada: SoilVision Systems Ltd.
  31. van Genuchten, M.T. (1980). "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils." Journal of Soil Science Society of America, Vol.44, No.5, pp.892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  32. Yoon, Y.N. (2007). Hydrology Basic and Application, Cheong Moon Gak, Seoul.
  33. Yoo, I.K. and Yoon, K.H. (2011). "Permeable Pavement as Urban Flood Reduction Measures." Journal of the Korean Society Hazard Mitigation, Vol.11, No.3, pp.31-38.

Cited by

  1. 투수성 아스팔트 포장 구조설계를 위한 설계인자 도출 및 설계방법에 관한 연구 vol.38, pp.1, 2018, https://doi.org/10.12652/ksce.2018.38.1.0113
  2. Relationship between reactive soil movement and footing deflection: A coupled hydro-mechanical finite element modelling perspective vol.126, pp.None, 2020, https://doi.org/10.1016/j.compgeo.2020.103720
  3. Multi-Criteria Analysis of a Developed Prefabricated Footing System on Reactive Soil Foundation vol.14, pp.22, 2015, https://doi.org/10.3390/en14227515