• Title/Summary/Keyword: Finite Difference Time Domain(FDTD)

Search Result 313, Processing Time 0.029 seconds

Design of the Electromagnetic Coupling Wideband Microstrip Antenna using FDTD Method (FDTD 법을 이용한 광대역 전자기 결합 마이크로스트립 안테나의 설계)

  • Jang, Yong-Woong;Shin, Ho-Sub;Kim, Nam;Park, Ik-Mo;Shin, Chull-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.4
    • /
    • pp.473-482
    • /
    • 1998
  • In this paper, characteristics of the wide band microstrip antennas with parasistic element are analyzed by the Finite Difference Time Domain(FDTD) method, and antenna parameters are optimized to get maximum bandwidth, retern loss, input impedance, and radiation pattern are calculated by Founier transforming the time domain results. The characteristics of the antenna are varied and the bandwidth of the antenna is broaded as a length and a width of the driven element, a gap of the driven element and the parasitic element, a width and a length of parasitic element. So the different patchs are resonating at different frequencies and this multipule resonance increase the bandwidth. The Results of the calculation and measurement, the size of the antenna with parasitic element is about a twice larger than a microstrip antenna, but bandwidth is four times better than a microstrip antenna. And these results were in relatively good accordance with the measured values.

  • PDF

Analysis of Endcap Effect for MRI Birdcage RF Coil by FDTD Method (FDTD 방법을 이용한 MRI Birdcage RF Coil의 Endcap 효과 분석)

  • Chung Sung-Taek;Park Bu-Sik;Shin Yoon-Mi;Kwak June-Sik;Cho Jong-Woon;Kim Kyoung-Nam
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.2
    • /
    • pp.137-143
    • /
    • 2003
  • Purpose : B1 field of birdcage RF (radiofrequency) coil that is used most for brain imaging in magnetic resonance imaging (MRI) decreases toward endring from the coil center. We investigated how much RE B1 homogeneity effect the endcap shield brings form the coil center as it towards to endcap region. Materials and Methods : We compared RF B1 field distribution by each finite difference time domain (EDTD) simulations for lowpass, highpass and hybrid birdcage RF coils. We selected the highpass birdcage RF coil that was the highest RF B1 field condition as simulation result, and studied how much RF B1 homogeneity effect was occurred when endcap shield was applied to endring area. Results : B1 field of the highpass birdcage RF coil was higher than other birdcage RF coil types as simulation result. However, the RF B1 homogeneity was lower than other coil types. RE B1 field of highpass birdcage RF coil with endcap shield is similar with RF B1 field of hybrid birdcage RF coil and the overall RE B1 homogeneity in sagittal direction was better. Conclusion In this paper, proposed method can apply improving RF B1 homogeneity of RF coil in clinical examination.

  • PDF

Numerical Computation of Radar Scattering Coefficient for Randomly Rough Dielectric Surfaces (불규칙적으로 거친 유전체 표면에서의 레이더 산란계수 수치해석적 계산)

  • 차형준;오이석
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.1
    • /
    • pp.65-72
    • /
    • 2000
  • Scattering coefficients of randomly rough lossy dielectric surfaces were computed by using the FDTD(Finite-Difference Time-Domain) method and the Monte Carlo method in this paper. The FDTD method was applied to compute electromagnetic wave scattering characteristics at any incident angles, any linear polarizations by dividing the computation region into the total-field region and the scattered-field region. The radar cross sections(RCS) of conducting cylinders have been computed and compared with theoretical results, measurement data and the results from the method of moment(MoM) to verify the FDTD algorithm. Then, to apply the algorithm to compute scattering coefficients of distributed targets, a two-dimensionally rough surface was generated numerically for given roughness characteristics. The far-zone scattered fields of 50 statistically independent dielectric rough surfaces were computed and the scattering coefficient of the surface was calculated from the scattered fields by using the Monte Carlo method. It was found that these scattering coefficients agree well with the SPM(Small Pertubation Method) model in its validity region.

Effect of Adjustable Antenna Substrate Thickness on Aperture-Coupled Microstrip Antenna

  • Somsongkul, T.;Lorpichian, A.;Janchitrapongvej, K.;Anantrasirichai, N.;Wakabayashi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1664-1667
    • /
    • 2003
  • Aperture-coupled microstrip antenna is one type of microstrip antennas. This type of antenna has bandwidth wider than simple microstrip antenna. Herein, we use two substrates, that have the same dielectric constant 2.47 (PTFE-quartz) in which upper substrate is a rectangular patch. The microstrip patch is fed by a microstrip line which is printed on lower substrate, through an aperture or slot in the common ground plane of patch and microstrip feed. This antenna is analyzed by using Finite Difference Time Domain (FDTD) method the specific design frequency 10 GHz and match impedance is 50 ohms. The simulation results of its characteristics are input impedance, return loss, VSWR and radiation patterns respectively.

  • PDF

Improved Impedance Matching of Dual-Frequency Microstrip Printed-Dipole Antenna with Conductor Back

  • Tangjitjesada, M.;Anantrasirichai, N.;Wakabayashi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1668-1671
    • /
    • 2003
  • A novel dual-frequency microstrip printed-dipole antenna operating at 5 GHz and 10 GHz is presented. This antenna is designed for wireless and mobile communication. The balance step coplanar strip is used to be a transmission line at the center of dipole with matching impedance at 50 ohm. Using the conductor strip align on the other side of antenna and adjust the width of step coplanar strip line to improved input impedance matching. By modification for matching impedance of dual frequency antenna are not affected to the radiation patterns. The Finite Difference Time Domain (FDTD) technique is applying to analyze the basic characteristic properties such as $S_{11}$ , input impedance , VSWR and radiation patterns. And these parameters are discussed. The analyze problem space are $51{\times}197{\times}175$ cells and cell dimension are ${\Delta}x=0.3\;mm$ and ${\Delta}y={\Delta}z=0.15\;mm$.

  • PDF

Analysis of Electromagnetic Field in Triangular Slot Antenna

  • Pomsathit, A.;Anantrasirichai, N.;Wakabayashi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1672-1675
    • /
    • 2003
  • Microstrip antennas have many applications in wireless communication system. This paper propose a analytical far-field pattern of radiation for application of the wireless communication. The triangular slot antenna fed by micorstrip line is proposed at resonance frequency 10 GHz. The simulation results of the electromagnetic field radiation pattern, S parameter, characteristic of input impedance are obtain by using the finite difference time domain (FDTD) method. The analytical space in FDTD analysis are $50{\times}171{\times}120$ cells with the cell dimension ${\Delta}x=0.152\;mm$, ${\Delta}y={\Delta}z=0.15\;mm$.

  • PDF

A Novel Feed Structure for a Broadband Microstrip Circular Slot Antenna (광대역 마이크로스트립 원형 슬롯 안테나를 위한 새로운 급전 구조)

  • 서영훈;박익모;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.948-957
    • /
    • 2001
  • We proposed a novel feed structure for a broadband circular slot antenna. The proposed antenna has a circular slot, a radiating element, and a novel microstrip feed structure which is composed of a 50 Ω microstrip feedline and a circular-shaped microstrip patch. This antenna is analyzed and optimized by using the finite difference time domain (FDTD) method. The impedance bandwidth of optimized antenna is 1.94 octave that is much broader than the conventional microstrip slot antennas.

  • PDF

Reducing Electromagnetic Radiation in Split Power Distribution Network of High-Speed Digital System

  • Shim, Hwang-Yoon;Kim, Jiseong;Yook, Jong-Gwan;Park, Han-Kyu
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.340-343
    • /
    • 2002
  • Electromagnetic(EM) radiation problems and their possible solutions are addressed in this paper for the split power plane of high-speed digital systems. Stitching and decoupling capacitors are proved to be very effective fur reducing signal noise, ground bounce as well as electromagnetic radiation from the split power plane. Simulations based on 3D-Finite Difference Time Domain (FDTD) method are utilized for the analysis of practical high frequency multi-layered PC main board

  • PDF

Design of Dual-band Microstrip Antenna for ISM Bandwidth using Cross Patch (십자형 패치를 이용한 ISM 대역용 이중대역 마이크로스트립 안테나 설계)

  • 박기동;정문숙;임영석
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.241-245
    • /
    • 2002
  • Dual-band microstrip antenna is designed for industrial-scientific-medical(ISM) band of 2.4㎓ and 5.8㎓ using finite-difference time-domain method(FDTD). Cross Patch fed by aperture in the ground plane of microstrip line is proposed as radiation element of antenna, which is 2 rectangular Patch is overlapped. To design antenna, change of input impedance by aperture and stub length change is examined. And it is investigated that center frequency and -10 ㏈ bandwidth by Length of radiation element and width change. Experimental result about reflection Loss confirmed that agree well with analysis results of FDTD and IE3D, And -3 ㏈ beam width, front to back ratio and gain in frequency 2.43㎓ and 5.79㎓ is presented by measuring radiation Pattern of antenna.

  • PDF

Microwave characteristics of traveling-wave modulator considering the microwave feedline (마이크로파 feedline을 고려한 진행파형 광변조기의 특성 분석)

  • 구민주;옥성해;윤영설;문연태;김도균;최영완
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.4
    • /
    • pp.41-47
    • /
    • 2004
  • In this paper, we analyze the microwave characteristics of traveling-wave electro-absorption modulator (TW-EAM) considering the microwave feedline and the impedance mismatch. The TW-EAM is analyzed by using the equivalent circuit model. The capacitance and the inductance of the equivalent circuit are evaluated by using 3-dimensional finite difference time domain (FDTD) method, while the microwave feedline is analyzed by momentum method. In a viewpoint of microwave characteristics, we present the effect of the structure and the length of microwave feedline.