• Title/Summary/Keyword: Fingerprint matching

Search Result 142, Processing Time 0.021 seconds

Fingerprint Verification using Cross-Correlation Function (상호상관함수를 이용한 지문인식)

  • 박중조;오영일
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.4
    • /
    • pp.248-255
    • /
    • 2003
  • This paper presents a fingerprint recognition algorithm using cross-correlation function. This algorithm consists of minutiae extraction, minutiae alignment and minutiae matching, where we propose a new minutiae alignment method. In our alignment method, the rotation angle between two fingerprints is obtained by using cross-correlation function of the minutia directions, thereafter the displacement is obtained from the rotated fingerprint. This alignment method is capable of finding rotation angle and displacement of two fingerprints without resorting to exhaustive search. Our fingerprint recognition algorithm has been tested on fingerprint images captured with inkless scanner. The experiment results show that 17.299% false rejection ratio(FRR) at 2.086% false acceptance ratio(FAR).

Design and Implementation of Location Error Correction Algorithm for RTLS (RTLS를 위한 위치 보정 기법의 설계 및 구현)

  • Jung, Dong-Gyu;Ryu, Woo-Seok;Park, Jae-Kwan;Hong, Bong-Hee
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.06a
    • /
    • pp.286-292
    • /
    • 2008
  • RTLS 시스템은 이동 객체에 RTLS 태그를 부착한 후 태그에서 발산되는 신호를 이용하여 실시간으로 위치를 파악하는 시스템으로 최근 항만 물류 및 자산 관리 분야에서 객체의 실시간 위치를 파악하기 위해 활용되고 있다. RTLS 시스템은 태그의 위치를 측정하기 위해 삼각 측량 법이나, Proximity matching법을 사용한다. 삼각 측량법은 3개 이상의 리더에서 수신된 신호 세기나 신호의 도달 시간을 이용하여 삼각측량 방식으로 위치를 결정하는 알고리즘으로, 전파의 난반사나 장애물등에 민감하며, Proximity matching법은 위치 샘플링 값에 대한 근접성을 이용한 통계 정보를 바탕으로 하여 위치를 결정하는 알고리즘으로 위치 정확도를 높일 수 있으나, 샘플링 데이터 개수에 따라 정확도가 크게 변화하는 문제가 있다. 본 논문에서는 이러한 위치 정보의 오차를 줄이기 위하여, Fingerprint 방식의 확률 모델에 TDOA 방식에서 사용되는 요소들을 혼합하여 확률에 의한 불확실성을 줄이고 더 높은 정확도의 위치 정보를 전달하는 위치 보정 기법을 제안한다. 본 논문에서 제안하는 2단계 위치 보정 기법은 먼저, Fingerprint 데이터 셋으로부터 현재 측정된 위치의 신호정보를 이용한 확률 모델을 적용하여 단 하나의 후보자를 결정한다. 둘째, 측정된 정보와 후보자 위치 정보를 기반으로 TDOA에서 사용하는 기하학적 위치 결정 방법을 변형한 알고리즘을 이용해 측정된 위치를 보정함으로써, TDOA 방식이나, Fingerprint 방식 둘 중 하나만 사용하는 것보다 향상된 위치의 정확도를 제공한다. 그리고 본 논문에서는 제안한 위치 보정 기법을 위한 위치 보정 모듈을 설계하였으며, RTLS 미들웨어에 이를 반영하여 구현하였다.

  • PDF

Parallel Processing of the Fuzzy Fingerprint Vault based on Geometric Hashing

  • Chae, Seung-Hoon;Lim, Sung-Jin;Bae, Sang-Hyun;Chung, Yong-Wha;Pan, Sung-Bum
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1294-1310
    • /
    • 2010
  • User authentication using fingerprint information provides convenience as well as strong security. However, serious problems may occur if fingerprint information stored for user authentication is used illegally by a different person since it cannot be changed freely as a password due to a limited number of fingers. Recently, research in fuzzy fingerprint vault system has been carried out actively to safely protect fingerprint information in a fingerprint authentication system. In addition, research to solve the fingerprint alignment problem by applying a geometric hashing technique has also been carried out. In this paper, we propose the hardware architecture for a geometric hashing based fuzzy fingerprint vault system that consists of the software module and hardware module. The hardware module performs the matching for the transformed minutiae in the enrollment hash table and verification hash table. On the other hand, the software module is responsible for hardware feature extraction. We also propose the hardware architecture which parallel processing technique is applied for high speed processing. Based on the experimental results, we confirmed that execution time for the proposed hardware architecture was 0.24 second when number of real minutiae was 36 and number of chaff minutiae was 200, whereas that of the software solution was 1.13 second. For the same condition, execution time of the hardware architecture which parallel processing technique was applied was 0.01 second. Note that the proposed hardware architecture can achieve a speed-up of close to 100 times compared to a software based solution.

A Study on the Fingerprint Recognition Method using Neural Networks (신경회로망을 이용한 지문인식방법에 관한 연구)

  • Lee, Ju-Sang;Lee, Jae-Hyeon;Kang, Seong-In;Kim, IL;Lee, Sang-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.287-290
    • /
    • 2000
  • In this paper we have presented approach to automatic the direction feature vectors detection, which detects the ridge line directly in gray scale images. In spite of a greater conceptual complexity, we have shown that our technique has less computational complexity than the complexity of the techniques which require binarization and thinning. Afterwards a various direction feature vectors is changed four direction feature vectors. In this paper used matching method is four direction feature vectors based matching. This four direction feature vectors consist feature patterns in fingerprint images. This feature patterns were used for identification of individuals inputed multilayer Neural Networks(NN) which has capability of excellent pattern identification.

  • PDF

A Fingerprint Classification Method Based on the Combination of Gray Level Co-Occurrence Matrix and Wavelet Features (명암도 동시발생 행렬과 웨이블릿 특징 조합에 기반한 지문 분류 방법)

  • Kang, Seung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.870-878
    • /
    • 2013
  • In this paper, we propose a novel fingerprint classification method to enhance the accuracy and efficiency of the fingerprint identification system, one of biometrics systems. According to the previous researches, fingerprints can be categorized into the several patterns based on their pattern of ridges and valleys. After construction of fingerprint database based on their patters, fingerprint classification approach can help to accelerate the fingerprint recognition. The reason is that classification methods reduce the size of the search space to the fingerprints of the same category before matching. First, we suggest a method to extract region of interest (ROI) which have real information about fingerprint from the image. And then we propose a feature extraction method which combines gray level co-occurrence matrix (GLCM) and wavelet features. Finally, we compare the performance of our proposed method with the existing method which use only GLCM as the feature of fingerprint by using the multi-layer perceptron and support vector machine.

Hardware Implementation of the Fuzzy Fingerprint Vault System (지문 퍼지볼트 시스템의 하드웨어 구현)

  • Lim, Sung-Jin;Chae, Seung-Hoon;Pan, Sung-Bum
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.2
    • /
    • pp.15-21
    • /
    • 2010
  • The user authentication using fingerprint information not only provides the convenience but also high security. However, the fingerprint information for user authentication can cause serious problems when it has been compromised. It cannot change like passwords, because the user only has ten fingers on two hands. Recently, there is an increasing research of the fuzzy fingerprint vault system to protect fingerprint information. The research on the problem of fingerprint alignment using geometric hashing technique carried out. This paper proposes the hardware architecture fuzzy fingerprint vault system based on geometric hashing. The proposed architecture consists of software and hardware module. The hardware module has charge of matching between enrollment hash table and verification hash table. Based on the experimental results, the execution time of the proposed system with 36 real minutiae is 0.2 second when 100 chaff minutiae, 0.53 second when 400 chaff minutiae.

Rotation-Scale-Translation-Intensity Invariant Algorithm for Fingerprint Identigfication (RSTI 불변 지문인식 알고리즘)

  • Kim, Hyun;Kim, Hak-Il
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.88-100
    • /
    • 1998
  • In this paper, an algorithm for a real-time automatic fingerprint identification system is proposed. The fingerprint feature volume is extracted by considering distinct and local characteristics(such as intensity and image quality difference etc.) in fingerprint images, which makes the algorithm properly adaptive to various image acquisitionj methods. Also the matching technique is designed to be invariant on rotation, scaling and translation (RST) changes while being capable of real-time processing. And the classification of fingerprints is performed based on the ridge flow and the relations among singular points such as cores and deltas. The developed fingerprint identification algorithm has been applied to various sets of fingerprint images such as one from NIST(National Institute of Standards and Technology, USA), a pressed fingerprint database constructed according to Korean population distributions in sex, ages and jobs, and a set of rolled-than-scanned fingerprint images. The overall performance of the algorithm has been analyzed and evaluated to the false rejection ratio of 0.07% while holding the false acceptance ratio of 0%.

  • PDF

A Robust Fingerprint Classification using SVMs with Adaptive Features (지지벡터기계와 적응적 특징을 이용한 강인한 지문분류)

  • Min, Jun-Ki;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.1
    • /
    • pp.41-49
    • /
    • 2008
  • Fingerprint classification is useful to reduce the matching time of a huge fingerprint identification system by categorizing fingerprints into predefined classes according to their global features. Although global features are distributed diversly because of the uniqueness of a fingerprint, previous fingerprint classification methods extract global features non-adaptively from the fixed region for every fingerprint. We propose an novel method that extracts features adaptively for each fingerprint in order to classify various fingerprints effectively. It extracts ridge directional values as feature vectors from the region after searching the feature region by calculating variations of ridge directions, and classifies them using support vector machines. Experimental results with NIST4 database show that we have achieved a classification accuracy of 90.3% for the five-class problem and 93.7% for the four-class problem, and proved the validity of the proposed adaptive method by comparison with non-adaptively extracted feature vectors.

Scoring Method of Fingerprint Image Quality using Classified Block-level Characteristics (블록 레벨의 분류 특성을 이용한 지문 영상의 품질 측정 방법)

  • Moon, Ji-Hyun;Kim, Hak-Il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.2
    • /
    • pp.29-40
    • /
    • 2007
  • The purpose of this research is to propose a method for scoring the quality of a fingerprint image using the local information derived from the fingerprint image. In previous works for the quality measuring, most of the quality scores are related to the performance of a matching algorithm, and this makes the quality result more subjective. The quality score of a fingerprint image proposed in this work is sensor-independent, source-independent and matcher-independent one, and this concept of fingerprint sample quality results in effective improvement of the system performance. In this research, a new definition of fingerprint image quality and a new method for measuring the quality are proposed. For the experiments, several sub-databases from FVCs are used and the proposed method showed reasonable results for the test database. The proposed method can be used in various systems for the numerous purposes since the quality scores generated by the proposed method are based on the idea that the quality of fingerprint should be sensor-independent, source-independent and matcher-independent.

Development of Template Compensation Algorithm for Interoperable Fingerprint Recognition using Taylor Series (테일러시리즈를 이용한 이기종 지문 센서 호환 템플릿 보정 알고리즘 개발)

  • Jang, Ji-Hyeon;Kim, Hak-Il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.4
    • /
    • pp.93-102
    • /
    • 2008
  • Fingerprint sensor interoperability refers to the ability of a system to compensate for the variability introduced in the finger data of individual due to the deployment of different sensors. The purpose of this paper is the development of a compensation algorithm by which the interoperability of fingerprint recognition can be improved among various different fingerprint sensors. In this paper we show that a simple transformation derived to form a Taylor series expansion can be used in conjunction with a set of corresponding minutia points to improve the correspondence of finer fingerprint details within a fingerprint image. This is demonstrated by an applying the transformation to a database of fingerprint images and examining the minutiae match scores with and without the transformation. The EER of the proposed method was improved by average 60.94% better than before compensation.