• Title/Summary/Keyword: Fine-grained soil

Search Result 105, Processing Time 0.025 seconds

Effect of grain size on the shear strength of unsaturated silty soils

  • Onturk, Kurban;Bol, Ertan;Ozocak, Askin;Edil, Tuncer B.
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.301-311
    • /
    • 2020
  • In this study, shear strength behavior of fine-grained soils was investigated under unsaturated conditions. The samples in the unsaturated state were subjected to a net normal stress (σ-ua) of 40 kPa and different matric suctions (ua-uw) of 50, 100 and 150 kPa. The matric suction values applied in the triaxial tests were selected according to the bubbling pressures determined from the SWC curves. The study was carried out on prepared re-constituted cylindrical samples by uniaxial consolidation of soil slurries. First, consolidated drained (CD) triaxial compression tests were performed on the saturated samples and the cohesion and angle of internal friction were determined. After that, drained triaxial compression tests under matric suctions were performed on the unsaturated samples. In order to obtain unsaturated test results, cohesion and internal friction angle values of saturated samples were used. The nonlinear surface representing the shear strength surface was approximated consisting of two planes (double planar surface). The reason for the nonlinear behavior of some soils is that the amount of sand content contained in it is relatively high and the bubbling pressure/permanent water content value is relatively low.

A Case Study of The Collapsed Reinforced-Soil Retaining Wall (보강토옹벽의 사고사례에 관한 연구)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang;Lee, Soung-Woo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.2
    • /
    • pp.13-21
    • /
    • 2004
  • This paper deal with the analysis of the causes about case of collapsed reinforced-soil retaining wall. The analysis of the cause was carried through experimentation, slop stability analysis and literature study. The experimentation treated the large direct shear test, the hydraulic conductivity test and the other basic test through backfill extraction from collapsed reinforced-soil retaining wall. The ultimate tensile strength was established by rib tensile strength test of geogrid. The analysis of internal and external stability of reinforced-soil retaining wall was performed on the basis of parameters. The result of analysis, reinforced-soil retaining wall and the slope at the dry season are stable. However, the factors that fine-grained soil at hydrometer test exceed the standard of the design, rainfall duration is too long at the time of collapse and monthly pricipitation is heavy, which are causes of the collapse.

  • PDF

Analysis of the lateral displacement to the Large Diameter Bored Pile based on the application of the Lateral coefficient of subgrade reaction (수평지반반력계수에 따른 대구경 현장타설말뚝의 수평변위 분석)

  • Chae, Young-Su;Kim, Nam-Ho;Bang, Ei-Souk;Lee, Kyoung-Jea
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.528-535
    • /
    • 2005
  • Using the case of design to the Large diameter Bored Pile, We showed the various method to estimate the Lateral coefficient of subgrade reaction and analyzed the lateral displacement behavior according to the characteristics of sub layer distribution. According to the study, Mutual relation to the N value and the soil modulus of deformation showed 400N to 800N to the fine grained soil and weathered soil. It showed simular tendancy with the proposed expression of Schmertmann. But Weathered rock was over estimated as 4,200N. $k_h$ to the sedimentory soil and weathered rock each showed these orded of Schmertmann-PMT-2,800N and Schmertmann-2,800N-PMT. As the factor($\alpha$) 4 was applied to the estimation in weathered rock, $k_h$ to the PMT was calculate as a big value. If the pile is long and the pile is surpported to the soil, Lateral displacement was in inverse proportion ratio to the value of $k_h$. But the case of shallow soil layer(early bedrock) and the short pile, Lateral displacement was affected by the behavior of socheted pile to the bedrock not by the upper soil layer.

  • PDF

Soil Property of Coastal Soft Ground Considering Geological Property (지질학적 특성을 고려한 해안연약지반의 토질특성)

  • 송무영;김팔규;김연천;류권일
    • The Journal of Engineering Geology
    • /
    • v.7 no.3
    • /
    • pp.217-227
    • /
    • 1997
  • The purpose of this study is to analyze the correlation of soil properties in coastal soft ground. For the purpose of this study, several coastal soft ground areas were selected. Many large scale construction works are being executed and will increase continuously in these soft ground areas. So, soil property in these areas is very important. The grounds forming coastal areas are affected by seawater movement. So, most of these areas consist of alluvium stratum. Therefore, soil properties of eastern and southern coastal areas are very complex. Many laboratory tests were executed with disturbed and undisturbed soil samples. Undisturbed samples were taken by using thin walled tubes and transported into the laboratory with caution, so as not to disturb the sample. The consistent rate of fine-grained content in these areas is over 90%. Also, these areas contain higher water content and clay content. Therefore, knowing these soil properties, it is possible to safely design fabrics and constructions.

  • PDF

Improvement of Well Efficiency through Well Development in a Pumping Well (충적층 양수정에서 우물개량을 통한 우물효율의 개선)

  • Kim, Gyoo-Bum;Kim, Byung-Woo;Kim, Sung-Yun
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.1
    • /
    • pp.39-49
    • /
    • 2010
  • Drilling at unconsolidated layer can make the aquifer disturbed and reduce a productivity of groundwater well. Surge block and air surging were applied to a pumping well located in Jeungsan-ri, Changnyung-gun, to improve a well efficiency by removing clogging and fine-grained slime. Two experimental log-linear equations, $y_1=-0.1769\;ln(x_1)+0.4960$ and $y_2=-84.3358\;ln(x_2)+512.8162$, were proposed in this site, in which $x_1$ and $x_2$ are the number of surging event, $y_1$ is the amount of slime, and $y_2$ is a recovery time of groundwater level after air surging. Well loss exponent (P) decreased after surging, from 3.422 to 1.439, and the groundwater inflow from aquifer happened in all directions around a well with gradually increasing the homogeneity in a local aquifer's hydraulic property. It was revealed that long-term well development should be done in the pumping well which is located in unconsolidated sediments to increase a well productivity.

Comparison of dynamic behavior of shallow foundations based on pile and geosynthetic materials in fine-grained clayey soils

  • Shariati, Mahdi;Azar, Sadaf Mahmoudi;Arjomand, Mohammad-Ali;Tehrani, Hesam Salmani;Daei, Mojtaba;Safa, Maryam
    • Geomechanics and Engineering
    • /
    • v.19 no.6
    • /
    • pp.473-484
    • /
    • 2019
  • In this paper, the geotechnical report of the Northern Fereshteh area in Tabriz is used and the characteristics of shallow foundation of a single pile and compared pile group and geogrid in terms of the settlement of a building foundation on clayey soil. Additionally, impacts of existing variables such as the number of geogrid layers, the length of the pile, and the depth of groundwater level affected by the dynamic load caused by the Taiwan Jiji earthquake via numerical analysis using PLAXIS software are examined. The results of fifty-four models indicated that the construction of a pile group with a diameter of 1 meter and a length of 14 meters significantly diminished the consolidation settlement of the soil in the Northern Fereshteh area, where the settlement value has been triggered by the load inflicted by earthquake. Moreover, the construction of four layers of geogrid at intervals of one meter led to a significant decrease in the settlement. Finally, after reaching a maximum depth, it had no reducing effects on the foundation settlement.

Effects of Flow Direction and Consolidation Pressure on Hydraulic Resistance Capacity of Soils (흐름방향과 압밀응력이 지반의 수리저항특성에 미치는 영향)

  • Kim, Youngsang;Jeong, Shinhyun;Lee, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.5
    • /
    • pp.55-66
    • /
    • 2015
  • Big tidal differences, which range from 3.0 m to 8.0 m, exist with regional locations at south and west shores of Korea. Under this ocean circumstance, since a large scour may occur due to multi-directional tidal current and transverse stress of the wind, the scour surrounding the wind turbine structure can make instability of the system due to unexpected system vibration. The hydraulic resistance capacity of soils consolidated under different pressures are evaluated by Erosion Function Apparatus (EFA) under unidirectional and bi-directional flows in this study. It was found that the flow direction change affects significantly on the sour rate and critical shear stress, regardless of soil types while the consolidation pressure affects mainly cohesive soil. Among geotechnical parameters, the undrained shear strength can be well-correlated with the hydraulic resistance capacity, regardless soil type while the shear wave velocity shows the proportional relationships with the hydraulic resistance capacities of fine grained soil and coarse grained soil, respectively.

Soil Properties of Granitic Weathered Soils in the Landslide-prone Areas in Seoul (서울지역 화강암 풍화토 토층지반의 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.29 no.1
    • /
    • pp.23-35
    • /
    • 2019
  • Landslides occur due to heavy rainfall in the summer season. Some of water may infiltrate into the ground; it causes a high saturation condition capable of causing a landslide. Soil properties are crucial in estimating slope stability and debris flow occurrence. The main study areas are Gwanaksan, Suraksan and Bukhansan (Mountain) in Seoul. A total of 44 soil samples were taken from the study area; and a series of geotechnical tests were performed. Physical and mechanical properties were obtained and compared based on region. As a result, among well-graded soils, they are classified as a clayey sand. Coarse-grained and fine-grained contents are approximately 95% and 5%, respectively, with very low amount of clay content. Density, liquid limit and dry unit weight are ranged in $2.62{\sim}2.67g/cm^3$, 27.93~38.15% and $1.092{\sim}1.814g/cm^3$. Cohesion and internal friction angle are 4 kPa and $35^{\circ}$ regardless of mountain area. Coefficient of permeability is varied between $3.07{\times}10^{-3}{\sim}4.61{\times}10^{-2}cm/sec$; it means that it results in great seepage. Permeability is inversely proportional to the uniformity coefficient and is proportional to the effective particle size. In the formal case, there was a difference by mountain area, while in the latter, the tendency was almost similar.

Correlation between Casagrande Test and Fall Cone Test Methods and their Applicability in Ground Improvement (카사그란데방법과 원추관입시험방법의 상관관계와 지반개량제의 적용성에 대한 연구)

  • Ko, Kun-Woo;Yeo, Dong-Jun;Kim, Kyung-Min;Lee, Byung-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.2
    • /
    • pp.5-17
    • /
    • 2023
  • In this study, a classification and uniaxial compression test of soil was conducted on 15 collapsed sites to use ground improvement with excellent protection effect owing to the increase of localized heavy rain in Korea. The Casagrande method and fall cone test were performed on the field soil to derive an expression for comparing liquid limit and plastic limit values, soil classification, and correlation between each other. By deriving the optimal mixing ratio of the ground improvement agent using uniaxial compressive strength for each soil classification, the classification of the fine-grained soil was not clear owing to the proficiency difference and test error. However, after classifying using the fall cone test, it was possible to suggest a clear optimal mixing ratio.

Behavioral Characteristics of Decomposed Residual Solis (다짐 풍화잔적토의 거동특성 연구)

  • Lee, In-Mo;Lee, Seung-Cheol;Kim, Yong-Jin
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.115-126
    • /
    • 1996
  • The purpose of 1,his study is to analyze the compression and strength charactefistics of the decomposed -weathered soil originating from biotite gneiss or fine grained gneiss sampled from Poidong, Seoul : to figure out the behavioural characteristics of the decomposed -weathered soil in accordance with mineral composition and origin by comparing experimental results of residual soils. originating from granites and sampled from Bulam, Andong and Kimchun area. A series of CIU, CID CKoV, CKoD tests were car lied out. Although weathered soils have different origin and mineral composition, the slope of the NCL A was similar. It was also shown that plastic strain ratio was about 85% mainly due to the particle crushing effect during compression. The Poidong soil showed strain softening phenomenon unlike the Kimchun and Andong soils. this implies that the behavioural characteristics are affected by the origin and the mineral composition of the soil particles. Moreover, it was found that the angle of the shear resistance$(\phi')$ was dependent on the mineral composition. On the oher hand, measured Af values of decomposed weathered soils were more than one regardless of the origin and the mineral composition.

  • PDF