• Title/Summary/Keyword: Fine-grained soil

Search Result 104, Processing Time 0.024 seconds

Evaluation of Remediation of Contaminated Soil Using PVDs (연직배수재를 이용한 오염도턍복원 특성 평가)

  • Shin, Eun-Chul;Park, Jeong-Jun;Roh, Jeong-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1400-1407
    • /
    • 2005
  • There are a number of approaches to in situ remediation that are used at contaminated sites for removing contaminants from the contaminated zone without excavating the soil. These include soil flushing, dual phase extraction, and soil vapor extraction. Of these techniques, soil flushing is the focus of the investigation in this paper. The concept of using prefabricated vertical drains(PVDs) for remediation of contaminated sites with fine-grained soils is examined. The PVD system is used to shorten the drainage path or the groundwater flow and promote subsurface liquid movement expediting the soil flushing process. The use of PVDs in the current state of practice has been limited to soil improvement. The use of PVDs under vacuum conditions is investigated using sample soil consisting of silty sand.

  • PDF

Freezing-thawing resistance evaluation of sandy soil, improved by polyvinyl acetate and ethylene glycol monobutyl ether mixture

  • Fard, Ata Rezaei;Moradi, Gholam;Ghalehjough, Babak Karimi;Abbasnejad, Alireza
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.179-187
    • /
    • 2020
  • Freezing-thawing cycles have significant effect on soils engineering behavior in frozen areas. This effect is more considerable in fine-graded than coarse-grained soils. The objective of this study is improving soil durability and strength in continues freezing-thawing cycles. For getting this purpose mixture of Polyvinyl Acetate (PVAc) and Ethylene Glycol Monobutyl Ether (EGBE) has been added to fine-grained soil and final prepared samples were tested at different freezing-thawing cycles. PVAc was mixed with 1%, 2% and 3% of soil weight. Half of PVAc weight was used as weight of EGBE. Freezing-Thawing cycles were exposed to samples and they were tested at different cycles. Results showed that adding mixture of PVAc+EGBE improved strength and durability of samples up to 10 freezing-thawing cycles. Unconfined compress strength tests were applied to samples and stress and strain of samples were tested on failure time. Behavior of samples was different at different percentages of mixture. Results showed that increasing amount of PVAc from 1% to 2% had more considerable effect on final stress than 2% to 3%. Using higher percentages of PVAc + EGBE mixture leaded to that samples carried more strain before collapsing. Another result gained from tests was that, freezing-thawing effect was more considerable after fourth cycles. It means differences between first and fourth cycles were more considerable than differences between fourth and tenth.

Field Appliciability Evaluation of Eco-friendly Mixed Soil (친환경 혼합토의 현장적용성 평가)

  • Park, Kyungsik;Oh, Sewook;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.17-25
    • /
    • 2014
  • In the present study, it were performed an unconfined compression test and a field applicability test according to a mixed ratio of SS, soil type and curing period to analyze strength and deformation characteristic in order to evaluate engineering characteristics of soil mixed pavements using the eco-friendly soil stabilizer (SS). The test results revealed that SS mixed soil shows fast strength development at the initial curing time while 28-day strength amounted for 97% of the final strength. Furthermore, coarse-grained dredged sand (DS) and weathered granitic soil (WGS) have a larger ratio of deformation coefficient with respect to unconfined compressive strength than fine-grained dredged clay (DC) and organic soil (OS). Moreover, a comparison test between natural and forced drying conditions was conducted and test result showed 54% to 67% of strength degradation while having 55% to 63% of strength degradation in the freezing and thawing test result. Finally, a repeated loading test result showed that DS experiences up to 35% of strength reduction compared to initial strength under 10,000 times loading in maximum. Thus, it was validated that an appropriate amount of fine-grained sand is necessary to secure resistance capability to repeated loading.

The Characteristics of Soil Remediation by Soil Flushing System Using PVDs (연직배수재를 이용한 토양세정시스템의 오염토양정화 특성)

  • Park, Jeong-Jun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.5
    • /
    • pp.76-86
    • /
    • 2007
  • For the purpose of ground improvement by means of soil flushing systems. Incorporated technique with prefabricated vertical drains have been used for dewatering from fine-grained soils. The laboratory model tests were performed by using the flushing tracer solutions for silty soils and recorded the tracer concentration changes with the elapsed time and flow rates. A mathematical model for prediction of contaminant transport using the PVD technology has been developed. The clean-up times for the predictions on both soil condition indicate more of a sensitivity to the dispersivity parameter than to the extracted flow rate and vertical velocity parameters. Based on the results of the analyses, numerical analysis indicate that the most important factor to the in-situ soil remediation in prefabricated vertical drain system is the effective diameter of contaminated soil.

Reinforced Earth Retaining Wall of The Collapsed-A Case Study. (보강토옹벽의 사고사례에 관한 연구)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang;Lee, Soung-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.958-967
    • /
    • 2004
  • This paper deal with cause and analysis about case of collapsed reinforced-soil retaining wall. The analysis of the cause was carried through experimentation, slop stability analysis and literature study. The experimentation treated the large direct shear test, the hydraulic conductivity test and the other basic test through backfill extracted from collapsed reinforced-soil retaining wall. The ultimate tensile strength was established by rib tensile strength test of geogrid. The analysis of internal and external stability of reinforced-soil retaining wall was performed on the basis of parameters. The result of analysis, reinforced-soil retaining wall and the slope at the dry season are stable. However, the factors that fine-grained soil at hydrometer test exceed the standard of the design, rainfall duration is too long at the time of collapse and monthly pricipitation is heavy are cause of the collapse.

  • PDF

Frost Heaving Pressure and Physical Characteristics of the Railway Roadbed Materials (철도노반재료의 동상팽창압 및 물리적 특성 평가)

  • Shin Eun-Chul;Park Jeong-Jun;Kim Jong-In
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.57-62
    • /
    • 2005
  • The frost heaving pressure can be a problem for weakening of the railway roadbed material. This study was initiated to investigate the soils frost heaving pressure and physical characteristics(Liquid limit, permeability, SEM analysis) resulting from freezing and freezing-thawing cycle process. Therefore, upon freezing a saturated soil in a closed-system from the top, a considerable pressure was developed. Weathered granite soils, sandy soil were used in the laboratory freezing test which sometimes subjected to thermal gradients under closed-systems. The frost heaving pressure arising within the soil samples and the temperature of the samples inside were monitored with elapsed time. The degree of saturation versus heaving pressure curve is also presented for weathered granite soil and the maximum pressure is closely related to this curve. Based on the laboratory test results, fine-grained soils with strong attractive forces between soil grains md water molecules, and additional water is attracted into the pores leading to further volume changes and ice segregation.

Enhanced Electrokinetic remediation of low permeability soil contaminated with phenanthrene (Phenanthrene으로 오염된 저투수성 지반의 향상된 Electrokinetic 정화 처리)

  • 김강호;한상재;김수삼
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.3-9
    • /
    • 2002
  • In this study, electrokinetic remediation tests were performed with spiked fine-grained soil by phenanthrene which is representative hydrophobic organic contaminant of petroleum hydrocarbon. And also, the enhanced method was used with surfactant concentration variation and elapsed time to achieve more higher removal efficiency than conventional electrokinetic treatment. In conventional electrokinetic treatment, most phenanthrene was not transported. But, in the enhanced method used by the surfactant, phenanthrene moved form anode to cathode region and accumulated in cathode region. Also, the transportation rate of phenanthrene was increased with surfactant concentration increasement and elapsed time.

Analysis on Wettability of Soil Composed of Sand and Fine-Grained Soil with Hydrophobic Surface (모래와 세립토로 구성된 소수성 흙의 습윤성 분석)

  • Jeong-Jun Park;Kicheol Lee;Seung-Kyong You;Jung-Mann Yun;Gigwon Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.43-49
    • /
    • 2023
  • This study described the test results to evaluate the effect of fines content on the wettability of sandy soil composed of hydrophobic soil particles. Wettability was evaluated using the contact angle obtained from the water drop test results for Jumunjin standard sand and sandy soil containing fines content. The test results showed that the wettability of sandy soil composed of sand and fine-grained soil changed depending on the hydrophobic level and fines content. The influence of fines content on the wettability of sandy soil was analyzed. It was found that 1% and 3% hydrophobic sandy soil with 5% fines content decreased by 94.4% and 32.4%, respectively, compared to the contact angle of standard sand. In addition, the contact angle reduction ratio for sandy soil with a 5% hydrophobic level and a fines content of 5% and 10% were 24.4% and 37.3%, respectively. In other words, the wettability of the soils should be evaluated considering the fines content to predict the behavior of contaminants, because the fines content has a significant impact on the value and increase/decrease ratio of the contact angle of sandy soil

Bearing capacity of strip footings on unsaturated soils under combined loading using LEM

  • Afsharpour, Siavash;Payan, Meghdad;Chenari, Reza Jamshidi;Ahmadi, Hadi;Fathipour, Hessam
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.223-235
    • /
    • 2022
  • Bearing capacity of shallow foundations is often determined for either dry or saturated soils. In some occasions, foundations may be subjected to external loading which is inclined and/or eccentric. In this study, the ultimate bearing capacity of shallow foundations resting on partially saturated coarse-grained cohesionless and fine-grained cohesive soils subjected to a wide range of combined vertical (V) - horizontal (H) - moment (M) loadings is rigorously evaluated using the well-established limit equilibrium method. The unified effective stress approach as well as the suction stress concept is effectively adopted so as to simulate the behaviour of the underlying unsaturated soil medium. In order to obtain the bearing capacity, four equilibrium equations are solved by adopting Coulomb failure mechanism and Bishop effective stress concept and also considering a linear variation of the induced matric suction beneath the foundation. The general failure loci of the shallow foundations resting on unsaturated soils at different hydraulic conditions are presented in V - H - M spaces. The results indicate that the matric suction has a marked influence on the bearing capacity of shallow foundations. In addition, the effect of induced suction on the ultimate bearing capacity of obliquely-loaded foundations is more pronounced than that of the eccentrically-loaded footings.

Prediction of Compaction, Strength Characteristics for Reservoir Soil Using Portable Static Cone Penetration Test (휴대용 정적 콘 관입시험을 통한 저수지 제방 토양의 다짐, 강도 특성 및 사면 안정성 예측)

  • Jeon, Jihun;Son, Younghwan;Kim, Taejin;Jo, Sangbeom;Jung, Seungjoo;Heo, Jun;Bong, Taeho;Kim, Donggeun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.1-11
    • /
    • 2023
  • Due to climate change and aging of reservoirs, damage to embankment slopes is increasing. However, the safety diagnosis of the reservoir slope is mainly conducted by visual observation, and the time and economic cost are formidable to apply soil mechanical tests and slope stability analysis. Accordingly, this study presented a predicting method for the compaction and strength characteristics of the reservoir embankment soil using a portable static cone penetration test. The predicted items consisted of dry density, cohesion, and internal friction angle, which are the main factors of slope stability analysis. Portable static cone penetration tests were performed at 19 reservoir sites, and prediction equations were constructed from the correlation between penetration resistance data and test results of soil samples. The predicted dry density and strength parameters showed a correlation with test results between R2 0.40 and 0.93, and it was found to replace the test results well when used as input data for slope stability analysis (R2 0.8134 or more, RMSE 0.0320 or less). In addition, the prediction equations for the minimum safety factor of the slope were presented using the penetration resistance and gradient. As a result of comparing the predicted safety factor with the analysis results, R2 0.5125, RMSE 0.0382 in coarse-grained soil, R2 0.4182 and RMSE 0.0628 in fine-grained soil. The results of this study can be used as a way to improve the existing slope safety diagnosis method, and are expected to be used to predict the characteristics of various soils and inspect slopes.