• 제목/요약/키워드: Fine aggregate for concrete

검색결과 586건 처리시간 0.024초

고로슬래그를 사용한 재생 잔골재 모르타르의 초기강도 특성에 관한 연구 (A Study on the Early-Age Strength Properties of Recycled Fine Aggregate Mortar Using Blast Furnace Slag)

  • 심종우;이세현;서치호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.101-104
    • /
    • 2006
  • This study aims to obtain technical data for improvement of utilization of Blast Furnace Slag(BFS), recycled aggregate in the future by complementing fundamental problems of BFS such as manifestation of initial strength and excessive alkali quantity as well as weakness of recycled fine aggregate through manufacturing of recycled fine aggregate mortar using BFS. Since hydroxide ion concentration of calcium hydroxide(Ca(OH)2) ion erupted from recycled fine aggregate newly produced is over 12. In recycled fine aggregate mortar transposing and using BFS powder, calcium hydroxide(Ca(OH)2) erupted from recycled fine aggregate played a role of stimulus from the day 3 and manifestation of compressive strength was slowly increased with mortar using natural fine aggregate and showed considerable increase from the day 7.

  • PDF

잔골재율을 변화시킨 콘크리트의 압축강도에 수평진동이 미치는 영향 (The Effects of Horizontal Vibration on the Concrete Compressive Strength under Fine Aggregate Modulus Variation)

  • 정병훈;김종훈;장희석;김종수;김명식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.304-312
    • /
    • 2001
  • The objective of this study is to find out effects of horizontal vibration on the compressive strength for 7days and 28 days cured concrete specimens according to the variation of fine aggregate modului, vibration velocities, and times began to vibrate. Four kinds of fine aggregate modului(40, 42, 45, 47%), three of vibration velocities(0.25, 0.5 0.1kine(cm/sec)), and four of times(0, 3, 6, 9hrs after concrete casting) were chosen as the experimental parameters in this study, the vibrations were applied for 30 minutes in each case. From this study, it could be seen that the most increase of compressive strengths were obtained in case of 47% fine aggregate modulus, and 0.25kine of vibration velocity, but the strength was decreased when vibrated after 9hrs from concrete casting.

  • PDF

생산 방식별 재생 잔골재의 품질에 대한 기초적 연구 (A Study on the Quality Improvement of Recycled Fine Aggregates with Production Methods)

  • 심종우;이세현;유명열;이문환;송태협
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.368-371
    • /
    • 2004
  • It analyzes the quality of the fine aggregate which is reproduced through a dry production process with cyclone and a wet production process. The conclusions of the study are as follows. 1. The recycled fine aggregate through the dry production process with cyclone shows the low rate of absorption and impurity content after the cyclone process. It shows that its density is 2.37, absorption rate is 4.8 and stability is $5.1\%$ and less. Therefore, it satisfies the standards of KS F 2573(recycled aggregate for concrete) as the first grade. 2. The recycled fine aggregate through the wet production process shows the low rate of absorption and foreign substance content after the process of wash and dehydration. It shows that its density is 2.40, absorption rate is 3.12 and stability is $3.2\%$ and less. Therefore, it satisfies the standards of KS F 2573(recycled aggregate for concrete) as the first grade.

  • PDF

철근 위치에 따른 이형철근과 순환잔골재 콘크리트의 부착거동 (The Bond Behavior between Deformed bars and Recycled Fine Aggregate Concrete according to Bar Position.)

  • 유영찬;장용헌;이민정;윤현도;최기선;이도헌
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.1089-1092
    • /
    • 2008
  • 철근과 콘크리트의 부착성능 확보는 철근콘크리트 구조물의 거동에서 중요한 요구사항이다. 구조체에 순환 잔골재 콘크리트를 적용하기 위해 순환 잔골재 콘크리트와 철근의 부착거동에 대한 규명이 매우 중요하다. 이에 따라 본 연구에서는 순환잔골재를 사용한 콘크리트와 철근 상호간의 부착거동을 평가하기 위하여 직접인발 실험을 수행하였다. 연구를 수행함에 있어 실험에 사용된 변수는 0, 100%의 순환잔골재 치환율 및 철근의 위치(상단근, 중간근, 하단근)로 하였다. 실험 결과는 CEB-FIP가 규정한 부착강도와 비교하였다. 본 연구를 통하여 얻어진 실험결과를 종합해 보면, 순환잔골재 콘크리트와 철근의 부착거동은 순환 잔골재 치환율 및 철근 위치에 영향을 받는다. H type 시험체의 경우 블리딩 현상이 일어나 V type 시험체와 HB 시험체만이 CEB-FIP가 규정한 부착강도를 만족하였다.

  • PDF

고막 패각을 잔골재로 사용한 전단보강근이 없는 철근콘크리트 보의 연성에 관한 연구 (A Study on Ductility Capacity of Reinforced Concrete Beam without Shear Reinforcement Using Cockle Shells as Fine Aggregate)

  • 김정섭;김광석
    • 한국건축시공학회지
    • /
    • 제5권2호
    • /
    • pp.139-146
    • /
    • 2005
  • As a result of compressive strength, specimens having mixture rate of cockle shells of $15\%\;and\;20\%$ showed more increases of compressive strength than non-mixture specimens as age increases. Ductility capacity of specimens was higher in specimens mixing cockle shells than in specimens using general fine aggregates and specimen of $10\%$ of cockle shells was highest in ductility capacity. To sum up all experimental results, ductility capacity of specimen without shear reinforcement using mixture of cockle shell was higher than non-mixture specimen and it is considered that mixture of cockle shells up to $20\%$ as fine aggregate for concrete will be available. Continuous researches on durability, workability and economy of crushed cockle shells used for substitute fine aggregate of concrete will be needed.

Porous concrete with optimum fine aggregate and fibre for improved strength

  • Karanth, Savithri S.;Kumar, U. Lohith;Danigond, Naveen
    • Advances in concrete construction
    • /
    • 제8권4호
    • /
    • pp.305-309
    • /
    • 2019
  • Pervious concrete pavements are the need of the day to avoid urban flooding and to facilitate ground water recharge. However, the strength of pervious or porous concrete is considerably less compared to conventional concrete. In this experimental investigation, an effort is made to improve the strength of pervious concrete by adopting fibres and a small amount of fine aggregate. A porous concrete with cement to aggregate ratio of 1:5 and a water-powder ratio of 0.4 is adopted. 30% of the cement is replaced by cementitious material ground granulated blast furnace slag (GGBS) for better strength and workability. Recron fibres at a dosage of 0.5, 1.0 and 1.5% by weight of cement were included to improve the impact strength. Since concrete pavements are subjected to impact loads, the impact strength was also calculated by "Drop ball method" in addition to compressive strength. The effect of fine aggregate and recron fibres on workability, porosity, compressive and impact strength was studied. The investigations have shown that 20% inclusion of fine aggregate and 1.5% recron fibres by weight of cement give better strength with an acceptable range of porosity.

분체의 종류에 따른 고유동 콘크리트의 품질성능에 관한 연구 (A study on the quality performances of the high flowing concrete for binder types)

  • 권영호;이현호;하재담
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.567-572
    • /
    • 2002
  • This research investigates experimentally an effect on the quality performances of the high flowing concrete according to binder types. The purpose of this study is to determine the optimum mix proportion of the high flowing concrete having good flowability, viscosity and no-segregation. For this purpose, two types using belite cement+lime stone powder(LSP) and furnace slag cement+lime stone powder are selected and tested by design factors including water cement ratio, fine and coarse aggregate volume ratio. As test results of this study, the optimum mix proportion for binder types is as followings. 1) One type based belite cement ; water cement ratio $51^{\circ}C$, fine aggregate volume ratio $43^{\circ}C$ and coarse aggregate volume ratio $53^{\circ}C$, replacement ratio of LSP $42.7^{\circ}C$. 2) Another type based slag cement : water cement ratio $41^{\circ}C$, fine aggregate volume ratio $47^{\circ}C$ and coarse aggregate volume ratio $53^{\circ}C$, replacement ratio of LSP $13.5^{\circ}C$.

  • PDF

고로수쇄 슬래그 잔골재의 품질에 대한 고찰 (A Study on the Quality of the Water Coold Blast Furnace Slag Fine Aggregate)

  • 문한영;최연왕;김기형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 봄 학술발표회 논문집
    • /
    • pp.24-28
    • /
    • 1990
  • The purpose of this study is to examine through the experimental study whether the water cooled unprocessed blast furnace slag produced in the country is useful for the fine aggregate of concrete or not. The results of this study show that the quality of the water cooled blast furnace slag is inferior to that of natural river sand and that the concrete made by substituting the water cooled blast furnace slag for fine aggregate have a tendency to decrease to some extent in strength. But if the water cooled blast furnace slag is transformed into more hardened state material, to use it as the fine aggregate of concrete will be possible.

  • PDF

순환잔골재 혼입 콘크리트의 강도 특성 및 전과정 환경영향 평가 연구 (A Study on the Strength Properties and Life Cycle Assessment of Recycled Fine Aggregate Concrete)

  • 최원영;김상헌;이세현;전찬수
    • 한국건설순환자원학회논문집
    • /
    • 제7권2호
    • /
    • pp.123-130
    • /
    • 2019
  • 본 연구에서는 순환잔골재의 혼입률에 따른 콘크리트의 강도 특성을 실험을 통해 확인하고, 전과정평가(LCA, Life Cycle Assessmet) 기법을 이용하여 순환잔골재의 전과정 환경영향을 평가하여, 콘크리트를 제조함에 있어서 순환잔골재 사용의 유효성을 확인하여 순환골재 콘크리트 활용을 위한 기초적 자료로 사용하는 것을 목적으로 한다. 이를 위해, 목표설계기준압축강도는 27MPa로 하였으며, 순환골재 실용화를 고려하여 순환잔골재의 혼입률을 0, 30, 60, 100%로 설정하여 굳지 않은 콘크리트 및 굳은 콘크리트에 대한 실험을 통해 슬럼프, 공기량, 압축강도 등을 확인하였고, 순환잔골재의 전과정 환경영향을 평가하고 타 골재와 환경영향을 비교 분석 하였다.

Effect of Powder and Aggregates on Compactability of High Performance Concrete

  • Lee, Seung-Han;Han, Hyung-sub
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.19-28
    • /
    • 1999
  • This study treated self-compacting high Performance concrete as two Phase materials of Paste and aggregates and examined the effect of powder and aggregates on self-compacting high performance, since fluidity and segregation resistance of fresh concrete are changed mainly by paste. To improve the fluidity and self-compactibility of concrete, optimum powder ratio of self-compacting high performance concrete using fly ash and blast-furnace slag as powders were calculated. This study was also designed to provide basic materials for suitable design of mix proportion by evaluating fluidity and compactibility by various volume ratios of fine aggregates, paste, and aggregates. As a result, the more fly ash was replaced, the more confined water ratio was reduced because of higher fluidity. The smallest confined water ratio was determined when 15% blast-furnace slag was replaced. The lowest confined water ratio was acquired when 20% fly ash and 15% blast-furnace slag were replaced together. The optimum fine aggregates ratio with the best compactibility was the fine aggregate ratio with the lowest percentage of void in mixing coarse aggregate and fine aggregate In mixing the high performance concrete. Self-compacting high performance concrete with desirable compactibility required more than minimum of unit volume weight. If the unit volume weight used was less than the minimum, concrete had seriously reduced compactibility.

  • PDF