• 제목/요약/키워드: Fine Particulate Matter

검색결과 285건 처리시간 0.021초

都市大氣중 浮遊粒子狀物質, 鹽化物, 窒酸鹽 및 黃酸鹽의 濃度와 粒經分布 (Concentration and Size Distribution of Atmospheric Particulate Matters, Chloride, Nitrate, and Sulfate Salts in Urban Air)

  • 손동헌;허문영
    • 한국대기환경학회지
    • /
    • 제2권3호
    • /
    • pp.27-33
    • /
    • 1986
  • Atmospheric particulate matter (A. P. M.) was collected and size-fractionated by an Andersen high-volume air sampler over 15 month period from Jan. 1985 to Feb. 1986 in Seoul. The concentration of chloride, nitrate and sulfate were extracted in an ultrasonic bath and were analyzed by ion chromatography. The annual arithmetical mean of A. P. M. was 128.54 $\mug/m^3$. The concentration of anions were 2.88 $\mug/m^3$ for chloride, 3.86$\mug/m^3$ for nitrate, and 25.44$\mug/m^3$ for sulfate. The content of A. P. M. was lowest in the particle size range 1.1 $\sim 3.3\mum$ and increased as the particle size increased or decreased. And the anions exhibited a seasonal variation in the isize distribution. The contents of anions were higher in winter than summer. Ther ratio of fine particles to the total particles defined by F/T for chloride, nitrate and sulfate. The F\ulcornerT of these anion generally decrease with increasing air temperature. This tendency was prevalent in the chloride and nitrate.

  • PDF

시간활동양상에 따른 주택의 시간대별 실내·실외 초미세먼지 농도비 (Indoor to Outdoor Ratio of Fine Particulate Matter by Time of the Day in House According to Time-activity Patterns)

  • 박진현;김은채;최영태;류현수;김순신;우병렬;조만수;양원호
    • 한국환경보건학회지
    • /
    • 제46권5호
    • /
    • pp.504-512
    • /
    • 2020
  • Objective: The purpose of this study was to evaluate the indoor to outdoor ratio (I/O ratio) of time activity patterns affecting PM2.5 concentrations in homes in Korea through a simulation. Methods: The time activity patterns of homemakers were analyzed based on the 'Time-Use Survey' data of the National Statistical Office in 2014. From September 30 to October 2, 2019, the experimenter lived in multifamily housing located in Guro-gu, Seoul. The I/O ratio of PM2.5 concentration was measured by installing sensor-based instruments. Results: The average indoor and outdoor PM2.5 concentrations during the three days were 33.1±48.9 and 45.9±25.3 ㎍/㎥, respectively. The average I/O ratio was 0.75±0.60. The indoor concentration tended to increase when PM2.5 source activity such cooking and cleaning was present and outdoor PM2.5 was supplied through ventilation. Conclusions: This study could be used as basic data for estimating indoor PM2.5 concentrations with personal activity pattern and weather conditions using outdoor concentrations.

산업 폐기물 소각시설의 입자상 물질 및 중금속의 배출특성 (Emission Characteristics of PMs and Heavy Metals from Industrial Hazardous Waste Incinerators)

  • 유종익;이성준;김기헌;장하나;석정희;석광설;홍지형;김병화;서용칠
    • 한국대기환경학회지
    • /
    • 제18권3호
    • /
    • pp.213-221
    • /
    • 2002
  • The emission characteristics of particulate matter (PMs) and heavy metals from hazardous industrial wast incinerators were investigated. The particle size distribution (PSD) of PM-10 showed different patterns for two tripes of incinerators; stoker and rotary kiln. However both types showed bimodal form at inlet of air pollution control devices (APCD) and each peak (mode) is located at smaller than 1 ${\mu}{\textrm}{m}$ and near 10 ${\mu}{\textrm}{m}$. It could explain the growth of fine PM by nucleation/coagulation/condensation of metal vapors for fine mode. The PSD of PM-10 after APCD was also influenced by APCD types that had different collection mechanism, and both electrostatic precipitator and bag filter showed less collection efficiency for particles ranged from 0.2 to 0.4 ${\mu}{\textrm}{m}$ and led to a mode in the range of 0.2 to 0.8 ${\mu}{\textrm}{m}$. However the hag filter showed two modes of PSD, while the electrostatic precipitator had one peak. The PMs and heavy metals emission factors, the representative value of emission quantity for sources, for tested facilities were developed. The emission factor of uncontrolled total PM and PM-10 were 14.7 and 7.05 kg/ton waste, respectively. The emission factors from this study were a little bit different with those from US EPA AP-42. It may thus be appropriate to use these results in the course of developing national emission factors.

준 실시간 측정시스템을 이용한 미세입자 원소성분 배출특성 조사 (Emission Characteristics of Elemental Constituents in Fine Particulate Matter Using a Semi-continuous Measurement System)

  • 박승식
    • 한국대기환경학회지
    • /
    • 제26권2호
    • /
    • pp.190-201
    • /
    • 2010
  • Fine particulate matter < $1.8{\mu}m$ was collected as a slurry using the Semicontinuous Elements in Aerosol Sampler with time resolution of 30-min between May 23 and 27, 2002 at the Sydney Supersite, Florida, USA. Concentrations of 11 elements, i.e., Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn, in the collected slurry samples were determined off-line by simultaneous multi-element graphite furnace atomic absorption spectrometry. Temporal profiles of $SO_2$ and elemental concentrations combined with meteorological parameters such as wind direction and wind speed indicate that some transient events in their concentrations are highly correlated with the periods when the plume from an animal feed supplement processing facility influenced the Sydney sampling site. The peaking concentrations of the elemental species during the transient events varied clearly as the plume intensity varied, but the relative concentrations for As, Cr, Pb, and Zn with respect to Cd showed almost consistent values. During the transient events, metal concentrations increased by factors of >10~100 due to the influence of consistent plumes from an individual stationary source. Also the multi-variate air dispersion receptor model, which was previously developed by Park et al. (2005), was applied to ambient $SO_2$ and 8 elements (Al, As, Cd, Cr, Cu, Fe, Pb, and Zn) measurements between 20:00 May 23 and 09:30 May 24 when winds blew from between 70 and $85^{\circ}$, in which animal feed processing plant is situated, to determine emission and ambient source contributions rates of $SO_2$ and elements from one animal feed processing plant. Agreement between observed and predicted $SO_2$ concentrations was excellent (R of 0.99; and their ratio, $1.09{\pm}0.35$) when one emission source was used in the model. Average ratios of observed and predicted concentrations for As, Cd, Cr, Pb, and Zn varied from $0.83{\pm}0.26$ for Pb to $1.12{\pm}0.53$ for Cd.

Numerical Simulation of Extreme Air Pollution by Fine Particulate Matter in China in Winter 2013

  • Shimadera, Hikari;Hayami, Hiroshi;Ohara, Toshimasa;Morino, Yu;Takami, Akinori;Irei, Satoshi
    • Asian Journal of Atmospheric Environment
    • /
    • 제8권1호
    • /
    • pp.25-34
    • /
    • 2014
  • In winter 2013, extreme air pollution by fine particulate matter ($PM_{2.5}$) in China attracted much public attention. In order to simulate the $PM_{2.5}$ pollution, the Community Multiscale Air Quality model driven by the Weather Research and Forecasting model was applied to East Asia in a period from 1 January 2013 to 5 February 2013. The model generally reproduced $PM_{2.5}$ concentration in China with emission data in the year 2006. Therefore, the extreme $PM_{2.5}$ pollution seems to be mainly attributed to meteorological (weak wind and stable) conditions rather than emission increases in the past several years. The model well simulated temporal and spatial variations in $PM_{2.5}$ concentrations in Japan as well as China, indicating that the model well captured characteristics of the $PM_{2.5}$ pollutions in both areas on the windward and leeward sides in East Asia in the study period. In addition, contribution rates of four anthropogenic emission sectors (power generation, industrial, residential and transportation) in China to $PM_{2.5}$ concentration were estimated by conducting zero-out emission sensitivity runs. Among the four sectors, the residential sector had the highest contribution to $PM_{2.5}$ concentration. Therefore, the extreme $PM_{2.5}$ pollution may be also attributed to large emissions from combustion for heating in cold regions in China.

Comparison of the effect of peat moss and zeolite on ammonia volatilization as a source of fine particulate matter (PM 2.5) from upland soil

  • Park, Seong Min;Hong, Chang Oh
    • 농업과학연구
    • /
    • 제46권4호
    • /
    • pp.907-914
    • /
    • 2019
  • Ammonia (NH3) that reacts with nitric or sulfuric acid in the air is the major culprit contributing to the formation of fine particulate matter (PM2.5). NH3 volatilization mainly originates from nitrogen fertilizer and livestock manure applied to arable soil. Cation exchange capacity (CEC) of peat moss (PM) and zeolite (ZL) is high enough to adsorb ammonium (NH4+) in soil. Therefore, they might inhibit volatilization of NH3. The objective of this study was to compare the effect of PM and ZL on NH3 volatilization from upland soil. For this, a laboratory experiment was carried out, and NH3 volatilization from the soil was monitored for 12 days. PM and ZL were added at the rate of 0, 1, 2, and 4% (wt wt-1) with 354 N g m-2 of urea. Cumulative NH3-N volatilization decreased with increasing addition rate of both materials. Mean value of cumulative NH3-N volatilization across application rate with PM was lower than that with ZL. CEC increased with increasing addition rate of both materials. While the soil pH increased with ZL, it decreased with PM. Increase in CEC resulted in NH4+ adsorption on the negative charge of the external surface of both materials. In addition, decrease in soil pH hinders the conversion of NH4+ to NH3. Based on the above results, the addition of PM or ZL could be an optimum management to reduce NH3 volatilization from the soil. However, PM was more effective in decreasing NH3 volatilization than ZL due to the combined effect of CEC and pH.

제주시 미세먼지(PM2.5)에 함유된 원소의 조성특성 및 오염원 (Elemental Composition and Source Identification of PM2.5 in Jeju City)

  • 이기호;허철구
    • 한국환경과학회지
    • /
    • 제27권7호
    • /
    • pp.543-554
    • /
    • 2018
  • From November 2013 to December 2016, ambient fine particulate matter ($PM_{2.5}$) was sampled in the downtown area of Jeju City, South Korea, which has seen rapid urbanization. The atmospheric concentrations of elements were measured in the $PM_{2.5}$ samples. This study focused on Cd, Cr, Cu, Mn, Ni, Pb, As, Sb, Sn, V, and Zn. The concentrations of Al, Na, K, Fe, Ca, Mg, Sr, and La were also obtained for reference. The objectives of this study were to examine the contributions of these elements to $PM_{2.5}$ concentrations in downtown Jeju City, and to investigate the inter-element relationships and the elemental sources by using enrichment factors and principal components analysis (PCA). A composition analysis showed that the 19 elements constituted 6.65 % of the $PM_{2.5}$ mass, and Na, K, Al, Fe, Ca, Mg, and Zn constituted 98 % of the total ion mass. Seasonal trend analysis for the sampling period indicated that the concentrations of the elements increased from November to April. However, no substantial seasonal variations were found in the concentrations of the elements. The composition ratios of some elements (Cu/Zn, Cu/Cd, Cu/Pb, V/Ni, and V/La) were found to be out of range when compared to the literature from other urban areas. The ratios between the elements and the PCA results showed that local contaminant sources in Jeju City rarely influence the composition of $PM_{2.5}$. This suggests that the major sources of $PM_{2.5}$ in Jeju City may include long-range transport of fine particulate matter produced in other areas.

인공지능을 이용한 수도권 학교 미세먼지 취약성 평가: Part II - 학교 미세먼지 범주화 (Vulnerability Assessment for Fine Particulate Matter (PM2.5) in the Schools of the Seoul Metropolitan Area, Korea: Part II - Vulnerability Assessment for PM2.5 in the Schools)

  • 손상훈;김진수
    • 대한원격탐사학회지
    • /
    • 제37권6_2호
    • /
    • pp.1891-1900
    • /
    • 2021
  • 직경 2.5 ㎛ 이하인 초미세먼지는 급격한 도시화와 인구 증가로 인해 대도시에서 많이 발생하며, 유아 및 청소년기는 성인에 비해 초미세먼지에 취약하고 만성 질환으로 이어질 가능성이 높다. 특히 대부분의 청소년들은 학교에서 가장 많은 시간을 보내고 있으며, 다양한 이유에 의해 실외에서 발생한 초미세먼지가 실내로 유입된다. 본 연구는 외부 요인에 의해 발생하는 학교 초미세먼지를 예측하고 학교별 초미세먼지 범주화를 수행하였다. 10-fold cross validation과 grid-search method를 적용한 random forest (RF) 모델에 화학과 기상 인자, 위성 기반의 aerosol optical depth (AOD)를 입력 자료로 하여 학교 초미세먼지를 예측하고 정확도 평가를 위해 4가지 통계 지표를 이용하였다. 학교 미세먼지 범주화를 위해 6가지 유형을 가진 느슨한 기준과 엄격한 기준을 정의하였으며, 범주화 결과 느슨한 기준의 경우 유형 2와 3에, 엄격한 기준의 경우 유형 3과 4에 가장 많은 학교가 포함되었다.

Environmental Health Literacy Regarding Fine Particulate Matter and Related Factors Among Village Health Volunteers in Upper Northern Thailand

  • Nattapon Pansakun;Warangkana Naksen;Waraporn Boonchieng;Parichat Ong-Artborirak;Tippawan Prapamontol
    • Journal of Preventive Medicine and Public Health
    • /
    • 제57권2호
    • /
    • pp.138-147
    • /
    • 2024
  • Objectives: Fine particulate matter pollution has emerged as a significant life-threatening issue in Thailand. Recognizing the importance of environmental health literacy (EHL) in disease prevention is crucial for protecting public health. This study investigated EHL levels and aimed to identify associated factors among village health volunteers (VHVs) in the upper northern region of Thailand. Methods: A cross-sectional study was conducted to collect data from 710 VHVs using the EHL assessment tool developed by the Department of Health, Thailand. Results: The overall EHL score was moderate (mean, 3.28 out of a possible 5.0), with the highest and lowest domain-specific mean score for the ability to make decisions (3.52) and the ability to access (3.03). Multiple linear regression revealed that the factors associated with EHL score were area of residence (urban areas in Chiang Mai: B=0.254; urban areas in Lampang: B=0.274; and rural areas in Lampang: B=0.250 compared to rural areas in Chiang Mai), higher education levels (senior high school: B=0.212; diploma/high vocational certificate: B=0.350; bachelor's degree or above: B=0.528 compared to elementary school or lower), having annual health checkups compared to not having annual health check-ups (B=0.142), monthly family income (B=0.004), and individuals frequently facing air pollution issues around their residence (B=0.199) compared to those who reported no such issues. Conclusions: The VHVs exhibited moderate EHL associated with residence area, education, health check-ups, family income, and residential air pollution. Considering these factors is vital for enhancing VHVs' EHL through strategic interventions.

국내 다양한 미소환경에서의 계절별 초미세먼지 및 오존 실내·외 농도 비 (Seasonal Indoor-to-Outdoor Ratio (I/O Ratio) of Fine Particulate Matter and Ozone Concentrations in Various Microenvironments in South Korea)

  • 김지수;곽수영;이기영
    • 한국환경보건학회지
    • /
    • 제50권4호
    • /
    • pp.257-266
    • /
    • 2024
  • Background: Exposure to fine particulate matter (PM2.5) and ozone (O3) poses potential health risks. The Indoor-to-Outdoor ratio (I/O ratio) is a valuable tool for understanding indoor air quality and identifying potential indoor sources. Objectives: The objective of this study was to determine I/O ratios of PM2.5 and O3 by different microenvironments and seasons in Korea. Methods: From December 2021 to November 2023, indoor concentrations of PM2.5 and O3 were monitored every hour in 13 microenvironments (residential indoor, office, school, restaurant, pub, café, study café, private educational institute, PC room, billiard room, screen golf center, supermarket, and shopping mall) in Korea. Hourly outdoor concentrations of PM2.5 and O3 were obtained from local air quality monitoring stations, provided by airkorea.or.kr. The hourly I/O ratio was calculated by the indoor and outdoor concentrations. Results: At the pub, billiard room, and PC room, the median PM2.5 I/O ratio exceeded 1 in all seasons, except in spring at the PC room (0.9), suggesting indoor smoking as a potential cause. The median PM2.5 I/O ratio at the restaurant exceeded 1 in winter, autumn, and summer, except for spring (0.9), indicating significant PM2.5 emission sources in the restaurant. The median O3 I/O ratio was below 0.5 in all seasons and microenvironments. Conclusions: This study provided useful data on relationships between indoor and outdoor pollution in various microenvironments by seasons. These I/O ratios could be applied for more accurate exposure assessment to protect health of human.