• 제목/요약/키워드: Filtering Process

검색결과 839건 처리시간 0.022초

개선된 스케일 스페이스 필터링과 함수연결연상 신경망을 이용한 화학공정 감시 (Monitoring of Chemical Processes Using Modified Scale Space Filtering and Functional-Link-Associative Neural Network)

  • 최중환;김윤식;장태석;윤인섭
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1113-1119
    • /
    • 2000
  • To operate a process plant safely and economically, process monitoring is very important. Process monitoring is the task to identify the state of the system from sensor data. Process monitoring includes data acquisition, regulatory control, data reconciliation, fault detection, etc. This research focuses on the data recon-ciliation using scale-space filtering and fault detection using functional-link associative neural networks. Scale-space filtering is a multi-resolution signal analysis method. Scale-space filtering can extract highest frequency factors(noise) effectively. But scale-space filtering has too large calculation costs and end effect problems. This research reduces the calculation cost of scale-space filtering by applying the minimum limit to the gaussian kernel. And the end-effect that occurs at the end of the signal of the scale-space filtering is overcome by using extrapolation related with the clustering change detection method. Nonlinear principal component analysis methods using neural network have been reviewed and the separately expanded functional-link associative neural network is proposed for chemical process monitoring. The separately expanded functional-link associative neural network has better learning capabilities, generalization abilities and short learning time than the exiting-neural networks. Separately expanded functional-link associative neural network can express a statistical model similar to real process by expanding the input data separately. Combining the proposed methods-modified scale-space filtering and fault detection method using the separately expanded functional-link associative neural network-a process monitoring system is proposed in this research. the usefulness of the proposed method is proven by its application a boiler water supply unit.

  • PDF

A Quasi-Likelihood Approach to Nonlinear Filtering Problems

  • Kim, Yoon-Tae
    • Journal of the Korean Statistical Society
    • /
    • 제27권2호
    • /
    • pp.221-235
    • /
    • 1998
  • Suppose that an observed process can be written as the additive model of the signal process and the noise process with unknown parameters. In practice the signal process is not directly observed. We consider the problem of estimating parameter from the observation process using the quasi-likelihood method.

  • PDF

Filtering Random Noise from Deterministic Underwater Signals via Application on an Artificial neural Network

  • Na, Young-Nam;Park, Joung-Soo;Choi, Jae-Young;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • 제15권3E호
    • /
    • pp.4-12
    • /
    • 1996
  • In this study, we examine the applicability of an artificial neural network(ANN) for filtering underwater random noise and for identifying underlying signals taken from noisy environment. The approach is to find a way of compressing the input data and then decompressing it using an ANN as in image compressing process. It is well known that random signal is hard to compress while ordered information is not. The use of a limited number of processing elements(PEs) in the hidden layer of an Ann ensures that some of the noise would be removed in the reconstruction process. Two types of the signals, synthesized and measured, are used to examine the effectiveness of the ANN-based filter. After training process is completed, the ANN successfully extracts the underlying signals form the synthesized or measured noisy signals. In particular, compared with the results form without filtering or moving averaged, the ANN-based filter gives much better spectrograms to identify underlying signals from the measured noisy data. This filtering process is achieved without using and kind of highly accurate signal processing technique. More experimentation needs to be followed to develop the ANN-based filtering technique to the level of complete understanding.

  • PDF

영이 아닌 DC값을 가지는 Discrete Cosine Transform을 이용한 CT Reconstruction (CT Reconstruction using Discrete Cosine Transform with non-zero DC Components)

  • 박도영;유훈
    • 전기학회논문지
    • /
    • 제63권7호
    • /
    • pp.1001-1007
    • /
    • 2014
  • This paper proposes a method to reduce operation time using discrete cosine transform and to improve image quality by the DC gain correction. Conventional filtered back projection (FBP) filtering in the frequency domain using Fourier transform, but the filtering process uses complex number operations. To simplify the filtering process, we propose a filtering process using discrete cosine transform. In addition, the image quality of reconstructed images are improved by correcting DC gain of sinograms. To correct the DC gain, we propose to find an optimum DC weight is defined as the ratio of sinogram DC and optimum DC. Experimental results show that the proposed method gets better performance than the conventional method for phantom and clinical CT images.

계측용 공간필터의 가변적 다치화된 가중치 실현에 관한 연구 (A Study on the Realization of Variable Spatial Filtering Detector with Multi-Value Weighting Function)

  • 정준익;한영배;고현민;노도환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.481-483
    • /
    • 1998
  • In general, spatial filtering method was proposed to simplify measurement system through parallel Processing hardware. Spatial filtering is a method of detection that we can get a spatial pattern information, as we process a special space pattern, to say, as we process spatial parallel process by using the spatial weighting function. The important processing characteristics will be depended in according to how ire design a spatial weighting function, a spatial sensitive distribution. The form of the weighting function which is realized from the generally used spatial filtering is fixed and the weighting value was already became a binary-value. In this paper, we propose a new method in order to construct adaptive measurement systems. This method is a weighting function design to make multi-valued and variable.

  • PDF

항공 라이다 수치지면자료의 오분류 영역 탐지 알고리즘 (Misclassified Area Detection Algorithm for Aerial LiDAR Digital Terrain Data)

  • 김민철;노명종;조우석;방기인;박준구
    • 대한공간정보학회지
    • /
    • 제19권1호
    • /
    • pp.79-86
    • /
    • 2011
  • 최근 수치표고모델(DEM : Digital Elevation Model)을 구축하기 위한 목적으로 항공레이저측량(LiDAR : Light Detection And Ranging) 기술이 주목받고 있다. DEM은 항공레이저측량으로부터 획득된 라이다 데이터에서 지면점만 추출한 수치지면자료(DTD : Digital Terrain Data)의 정확성에 의해 그 품질이 좌우된다. 하지만 원시자료에서 수치지면자료를 추출하기 위한 자동 필터링 작업은 필터링 알고리즘의 한계 및 라이다 데이터의 고유한 특성으로 인하여 항상 오분류 영역이 발생한다. 따라서 이를 보완하기 위해서는 작업자에 의한 수동분류 작업이 반드시 필요하다. 본 연구에서는 수동 작업이 원활하게 이루어 질 수 있도록 자동 필터링 작업에서 얻어진 수치지면자료에서 오분류 될 가능성이 있는 영역을 자동으로 탐지하는 알고리즘을 제안한다. 제안된 알고리즘은 2D 격자 구조를 적용하였으며 'Slope Angle', 'Slope DeltaH', 'NNMaxDH(Nearest Neighbor Max Delta Height)'로 명명한 매개변수를 사용하였다. 실험 결과, 제안된 알고리즘은 지형형태나 라이다 데이터 평균 점밀도에 제한받지 않는 안정적인 결과를 보여주었다.

Robust Multiuser Detection Based on Least p-Norm State Space Filtering Model

  • Zha, Daifeng
    • Journal of Communications and Networks
    • /
    • 제9권2호
    • /
    • pp.185-191
    • /
    • 2007
  • Alpha stable distribution is better for modeling impulsive noises than Gaussian distribution in signal processing. This class of process has no closed form of probability density function and finite second order moments. In general, Wiener filter theory is not meaningful in S$\alpha$SG environments because the expectations may be unbounded. We proposed a new adaptive recursive least p-norm Kalman filtering algorithm based on least p-norm of innovation process with infinite variances, and a new robust multiuser detection method based on least p-norm Kalman filtering. The simulation experiments show that the proposed new algorithm is more robust than the conventional Kalman filtering multiuser detection algorithm.

Kalman Filtering 이론에 의한 하천 유출 안전관리에 관한 연구 (A Study on the Safety Management of Streamflows by the Kalman Filtering Theory)

  • 박종권;박종구;이영섭
    • 한국안전학회지
    • /
    • 제11권2호
    • /
    • pp.122-127
    • /
    • 1996
  • The purpose of this study has been studied and investigated to prediction algorithms of the Kalman Filtering theory which are based on the state-vector description, including system identification, model structure determination, parameter estimation. And the prediction algorithms applied of rainfall-runoff process, has been worked out. The analysis of runoff process and runoff prediction algorithms of the river-basin established, for the verification of prediction algorithms by the Kalman Filtering theory, the observed historical data of the hourly rainfall and streamflows were used for the algorithms. In consisted of the above, Kalman Filtering rainfall-runoff model applied and analysised to Wi-Stream basin in Nak-dong River(Basin area : $472.53km^2$).

  • PDF

공정측정데이터의 비선형표현과 전처리를 활용한 분류기반 진단 (Diagnostic Classification Based on Nonlinear Representation and Filtering of Process Measurement Data)

  • 조현우
    • 한국산학기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.3000-3005
    • /
    • 2015
  • 신뢰할 수 있는 공정 감시와 진단은 생산 공정의 안전과 최종제품의 품질을 보장이라는 관점에서 중요하다. 공정진단의 목적은 특정한 공정 이상의 원인을 밝혀내는 것이다. 본 연구에서는 분류기법에 기반한 공정진단 체계를 제시한다. 여기서는 공정데이터를 비선형 데이터 표현기법을 통해 변환함으로써 데이터의 크기를 줄이며 효율적인 데이터 표현이 가능하다. 추가적인 단계로서 공정 데이터의 전처리 과정을 통해 진단에 무관한 공정 패턴을 제거하고 진단 성능을 높이고자 한다. 진단 성능을 평가하기 위해 회분식 공정에 대한 사례연구를 수행한 결과 기존 선형 진단 방법론 및 전처리 과정이 없는 방법론에 비해 향상된 진단 결과를 얻을 수 있었다.

STOCHASTIC CALCULUS FOR ANALOGUE OF WIENER PROCESS

  • Im, Man-Kyu;Kim, Jae-Hee
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제14권4호
    • /
    • pp.335-354
    • /
    • 2007
  • In this paper, we define an analogue of generalized Wiener measure and investigate its basic properties. We define (${\hat}It{o}$ type) stochastic integrals with respect to the generalized Wiener process and prove the ${\hat}It{o}$ formula. The existence and uniqueness of the solution of stochastic differential equation associated with the generalized Wiener process is proved. Finally, we generalize the linear filtering theory of Kalman-Bucy to the case of a generalized Wiener process.

  • PDF