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Abstract

In this study, we cxamine the applicability of an artificial neural network{ANN) for fillering underwater random noise

and for identifying underlying signals taken from noisy environment. The approach is 1o find 4 way of compressing the in-

put data and then decompressing i1 using an ANN as in image compressing process. It is well known that random signal is

hard to compress while ordcred information is not. The use of a limited number of processing clements(PEs} in the hidden

layer of an ANN cnsures that some of the noise would be removed in the reconstruction process. Two lypes ol the signals,

synthesized and measured, are used to cexamine the effectiveness of the ANN-based filter. Aflter (raining process is

completed, the ANN successfully cxtracts the underlying signals from the synthesized or measured noisy signals. [n particu-

lar, compared with (he results {rom without filtering or moving averaged, the ANN-based (iller gives much beticr

spectrograms to identily underlying signals from the measured noisy data. This lillering process is achicved wilhout using

any kind of highly accuratle signal processing technique. More cxperimentation needs to be followed lo develop the
ANN-based fitering fechnigque to the level of cotaplele understanding.

1. Introduction

In underwaler environment, acoustic wave is lhe mosl
powerful tool to detect targets. Although all ether me-
thods such as MAD(magnetic anomaly detection), IR{in-
fra-red} and radar play Lheir parts in delecling under-
water largels, the only really successful and well proven
method to date is by the use of sound.! There are four
principal phascs against targets:delection, classtfication,
localization and strikc. Among these, classification relics
primarily on highly accurate signal processing lechniques
to filter random noise and (o retain consistently recurring
patterns. The most useful clue in classifying the larget is
the frequency information of the signal existing usually in
the lower frequency. Hence, the low pass filler i1s often
applied to filter out the higher frequency signal in classifi-
calion phase.

Many kinds of algorithms have been developed to filter
noise from delerministic signals. Most general type of op-
timal ftltering is known as Wiener [iltering. Specifically, it
is destred to usc the present value, and the previous val-
ucs of some length, to cslimate the desired value. This is

to he done for all values by a linear ftiter designed 1o min-
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imize the mean-squarc error.? The eslimating process in-
cvitably introduces errors and various other complications
and brings up the whole issuc of estimation of the model
parameters. The Wiener filter requires a priori knowledge
of lhe spectral propertics of the noisc-free signals.” The
popular fincar models arc the suloregressive(AR), moving
average(MA), and autorcgressive moving average(ARMA),
Other non-tinear filters have been developed which out-
priforms the Wicner filter and fillers random noise with a
priori knowledge of the signal characteristics.” However,
these filters would be applied 10 a signal that is corrupted
with random noise of known strength and completcly
random.

An ANN-based filter has been partially applied 1o filler
random noisc from underlying signals.” However, few at-
templs have been made to decal with underwalter acoustic
signals which arc corcupled with noise other than of ran-
dom. The undcrwater signals need to be processed before
the ANN-based filter is applied 1o filler random noise.

In this study, we consider applications of an artificial
neural network(ANN) based on the back-propagation le-
arning scheme to filter underwaler random notse and to
identily underlying signals taken from noisy environment.
Unlike the conventional filters, an ANN-based fifter regu-
ires no parameler estimalion or prioni knowledge of noise
strength. As one of the learning schemes of an ANN, the

back-propagation i1s a powerful adaptive technique for ap-
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proximating relationships hetween several continonous val-
ucd inputs and one (or morce) continuous valued output.®

The approach is to find a way of compressing (he input
data and then decompressing it as in image compression.®
The main goai of image compression lechmicues is to
slore or transmit an image with a reduced numner of bils
and a limited distortion in the retrieval or reception. It is
well known that random noise s hard 1o compress
whereas ordered information is not. We use this property
to filter random noise from noisy underwater signals. The
compressing process removes portions of the inpul data,
which represent small or nonrecurring features.

We consider an ANN having a limited nunber of pro-
cessing clements(PEs) in the hidden layer to filter random
notsc. The use of a limiled number ol PEs ensures that
some of the information {preferubly lhe noise) would be
removed during lhe reconstruclion. We cxpect thal the
ANN-based filter would function as a low pass lifler. Thr-
ough this study, the noise s assumed to be random and
of a higher frequency than the underiying signal. Two
lypes of signals are used in this study. Onc is synthesized
signal and the olher is measured onc using acouslic sen-
sors in shallow water. In order to cxamince the effective-
ness of the ANN-based filter, specirograms arc presented
for the measured signals.

Il. Characteristics of Signal and Noise

We use two kinds of signals: synthesized and nmicasured
oncs. The synthesized signals arc sequences of constant
and variable amphlitudes conlaminated by the white Gaus-
sian noise. The two synthesized signal sequences are gen-

erated using

(0] = % (0.3sin{2 2/ 100} +0.45in(272{200) +0.3sin(2n1/400)

+0.2 cos(2anf150) +0.3 cos(2r2/300) + |2] +1.5]
(1

and

xi[n|= T‘; [ r2sin(6 nnf1024) — ncos(40 naf 1024) s (2] +2.0],
- (2)

where  x)In)=noisy signal sequence of 5 tones and con-
stant amplitude,

x2[7] =noisy signal sequence of 2 tones and vari-
able amplitude,

nz2(2] = noise sequence of mean of zero and van-

ance of 0.1 or 0.5,

U

1:[7] = noise sequence of mean of zero and vari-
ancc of 0.1, and »=0, 1, 2, ---, 1023,

The noisc is assumed (o be random and of a higher fre-
quency than the underlying signals. So, it is clear thatl the
contribution of the noise 1o the signals will 1end to be
random or nonstationary wilh respect to other larger fe-
atures. As a result, the noise will most kikely be one of
the features removed in (he compressing process.

The measured signals have been collected in shallow wa-
ter, where the depth is around 150 m.” The sound source,
transtilting 4 toncs in the frequencics of 204, 216, 229,
and 240 Hz, was towed al specd of I} kts and depth of
20 m, while the receiver, the horizonlad hne array having
11 senser elements, was installed on the sea botlom. Dala
sampling rale in analog-to-digita) conversion is 24.4 kHz.
The digitized data are transformed into the Irequency do-
main using the fast Fourier transform(FFTY, (he size be-
ing 2'"(or 2048).

Spectrograms are oblained by applying the Order Trun-
cate AveragelOTAY® normalizer. The process of whilen-
ing the noisc spectrum is called normalization and is ma-
thematically defined by Ax= Xpfex, where Xy is the mag-
nilude in bin & and g is the nonse mean estimale in bin &.
The OTA normalizer was developed in 1978 by Wolcin. '
The following steps describe the OTA scheme bricfly 2 (1)
The X bin values tn the parlicular set Q¢ are ordered Lo
form a new sequence (Y, Yy, -, ¥i), where ¥, is the
smallest, and ¥4 is the bargest. {2) The sample median ¥y
is ideatified. and all bins having values greater than » ¥y
are excluded {a valuc » is given by 1.4 in this study). As-
sume¢ L bins remain after the exclusion process. (3) The
noise mean eslimate g is then obtained using the L re-
maining bins:

Y;
=Y —, (1)
M= I3

A~

The details of the OTA scheme are given in lhe previous
study.’

The normalized signals are applied to the ANN in or-
der to filter random noisc in the lrequency domain, For
the comparison, the moving average (11 [requency bins of
size) is also employed. The spectrograms of the filtered
signals are compared with those of without filiering and

of the moving averaged.

. Application of an ANN

The unique characteristics of an ANN approach is that



the oulput of the weighted sum (lincar combination of
the inputs} is iransformed using a nonlincar function such
as a sigmoid or sinc function. These nonhinearities make
the creation of mullilevel systcms possible and are re-
sponsiblc lor several resultant characieristics."

The ANN employed in this sludy is (he semilinear fecd-
forward neiwork having 3 layers of nput, hidden, and
output. Figure | shows the architecture of the nclwork.
The number of PEs in the input and outpul layers is
chosen as 19 for the synthesized signals, while 1t is |1 for
the measured signals. The number off PEs in the hidden
layer varies from 3 lo Ll both for the synlhesized and
measured signals,

The network is known to have a greater capability lo
gel arbitrary complex nonlincar mappings and Lo gener-
alize from given dala than the lincar pereeplron.’’ The
outpuls of PEs in one layer arc lransmitied 1o PEs in
anolher layer through links thal amplify or inhibit the
oulpuls by multiplying weighling lactors. The nel inpul
1o kth PE, yk. is the sum of the weighted oulpuls ol the

PEs in the prior layer:
o= 2 W05, 4)
ki

where wy; is Lhe weighling [aclor for the fth PE in (he
previous layer transmitting Lo the &th PE and o, is the
output Mrom the flh PE in 1he previous layer. The aclivily
of each PE is deternuned by its inpul and its activalion
function together wilh an associated bias term. Thus the

oulput of jth PE is,
o,= f(y) {5

where f is the activation function. In this study, a sig-

moaidal activation (unction is employed as following:

|
% T Fexpl -y, +0,)/0,)

(6)

Qutput Layer

Hidden Layer

tnput Layer

Figure 1. ANN architecture having 3

oulpul,

The Journal of the Acouslical Sociely of Karea, Vol. 15. Nou. 3E {1996)

where &, 1s the bias lerm.

The learning process is as (ollows:The network starls
off with a random set of weight values. One ol the Iruin-
ing scl patierns f 1s chosen. Using 1his patlern as input,
the outpuls arc calculaled in o feedforward manner. In
general, the oulputs v will not be the same us the larget
vitlues £pe. For cach paticrn, the mean square crror{ MSE)
£ s dehined by

1 -
E=-— 2% Up—0m) (N
k

2p

The corrections (o the weights are made by taking sm-
all changes (Aw,;) proportional to —2£/fw;; as follows:
Using the back-propagation scheme,’ the network calcul-
ales Apw), lor all the w,; for thal particular p, where A,
W =ndie;, 8= - FE{dy;, and 4= constant. This pro-
cedure s repeated for all the palterns in the lraining sel
10 yicld the resulting Azoj; Tor all the weights for (hat one

ilcration ; that is,
Au’/i = E Aﬂwji - (8)
»

In a successful learning excrcise, the MSE will decrease
with 1he number of iterations, and the procedure will con-
verge (0 a stable set of weights.

The way we train the nelwork is to randomly select a
block of 19 {or 11) sequencial samples from the noisy sig-
nal sequence, and to use this as both the input and de-
sired oulput of 1he network. This is subjected Lo repeat
HKOW} times Tor each of the networks, which takes about
! nuinule on the Convex C3420 system. Ia facl, however,
the ANN converges very rapidly during the process of
training. Figure 2 shows the mean square error{MSE) lor
the ANN having 19 PEs in the input and oulput layers,
and 5 PEs in the hidden layer. Tt can he shown thal the
MSE approaches almost 0 within the iteration number

1000. Each lime a block of inputs is applied 1o the net-

Y1 {or 11} PEs

A
|
A\ 3-11 variable PEs
i

|
CB 19 {or 11) PEs

[ias

layers of input, hidden and
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work, the weights are slightly adjusted lo make the actual

network oulput closer to the desired output.

WMSE .01 tar nese var=0 1

<4y oo

Mean Square Erroc

Qe . e
10’ W 10/

A, Hyumber

Figure 2. Mcan square error with iteralion number in the process
of the ANN (raining,

During the recall process, Lhe noisy signal set is shifted
through a 19-glement long shift register and the outpul is
computed with that of inpuls. The signal is shifted onc
position and the process is repeated like the wayv in the
moving average {Fig. 3). Only the middie oulpul zlement
is used as the [liltered output.

19 (or 11) Element Lang Register

x[n) + ? ? ® - j T Tz Noisy S gnals
lstEY'é .

m 2nt|31 ' ----- Filtered Signals
rd

Center Element

Figure 3. Filtering process using the ANN. Recalling data is re-
pealed by shilling one position through a [9-element
long register.

I¥. Results and Discussions

The filtered resutts by applying the ANN are obtained
for four cases:lwo cases for the synthesized signals with
constant amplitude, onc case for the synthesized signals
with variable amplitude and the other for the measured
signals. Table 1 summarizes all cases. All types of signals
are scaled in order to confine their amplitudes in between
0 and 1. This is ngcessary because we use a sigmoidal ac-

tivation function tn our all applications.

A.1 Constant amplitudes and noise vanance 0.¥{Case )

Figurc 4 shows the scquences of the noisy and filtered
signals with 5 tones and constant amplitudes. The noisy
signal is generated by eq.(1} of which noise is mean 0 and
variance 0.1. The signal filicred hy the ANN with 3 PEs
in the hidden Jayer (Fig. 4b) gives the patterns similar to
the noise-frce signals but gives somewhat unrcasonable
oncs particularly on the lower pcaks. The signal with 11
PEs (Fig. 4c) gives better results and reconstructs almost
all signatures of the noisc-free signals. That is, they also
give major signal patlerns but no longer unreasonable

results as seen in those with 3 PEs in the hidden layer.

Arplitude

Tine Sequoacs

) i Luk

-
-

0.2 -

400 890 800 1000

Time Sequence
J :’7 !
{ o
(\/ V
{

|
i
i
|
i

0.6

Anglatude

<
-

w

L} 200 400 808 10t 1¢oo
Tire Sequencs

0.2

Figure & Sequences of the noisy and filtered signals by the ANN.

{a) Noisy signals with noise variance 0.1. Filicred signals
with {b) 3 PEs {c) 11 PEs in the hidden layer.



In filtering process, only the middle output element (5.
¢., the 10th ¢lement among 19 outpul elements) is used as
the filtered oulput. This is recasonable because when we
are 1o have only one outpul ¢lement that is trasned to
produce the value of the middle input, the output is afflec-
led almost exclusively by (he center inpul, all other inputs

being ignored.*

A.2 Constant amplitudes and noise variance 0.5(Case Il )

Casc 1 1s same with Case | except the noise variunce is
increascd from 0.1 to 0.5. This casc is aimed (0 examine
the applicability of the ANN-based filter aguinst the
noisy signils with increased noise level.

Figure 5 presents the sequences of the Nillered signals
with 3 and 11 PEs in the hidden layer. Al a glance, lhe
two resulls show (hat most of the underlying signals arce

retained while noise is preaily filtered oul.

“ Amel kTbde

Tims Sequence

2.8
(b) .
R A
H Ay iy ! \
3 s /'\ y A 1.
% o TR R P I
A \‘/ \'ﬁ\ P y‘) kvr‘
T |
ALY KV Y
i i i i
S REACT .
| | : i
i | !
¢ i ‘ |
o 10 200 300 400 500 600 700 800 300 1000

Time Sequencs
Figure 5. Signal sequences filtered by the ANN for the noisy sign-
als geoeraled by eq. (1) having noise variance $.5:with
{a} 3 PEs and (b) ['{ PEs in (he hidden layer.

To examine the characteristics of the ANN-based filler,
the amplitude spectra are determincd (or the noisy and
filtercd signals (Fig. 6). Figurc 6a shows the amplitude
spectra (lincar and not normalized) with frequency bins

for the noisy signals. In the Gigure, it is evident that there

400 500 600 700 800 9900 1000
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exist 5 tones as expecled in eq.(1). The filtered results
with 6 PEs {Fig. 6b) show thal most ot the noisc is fil-
tered in the higher frequency region meusured from bin
number 150 but still remained in the lower region. When

the aumber of PE in the hidden layer is decreased to 3
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Figure 6. Amplitude spectra (lincar and not normalized) of Lhe
noisy and filtered signals. (a) Noisy signals with noise
vanance 0.5 {¢q.(1)) and the filtercd signals by the ANN
wilh (b) 6 PEs and (¢) 3 PEs in the hidden layer.
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(Fig. 6¢), most of the noise is filiered in the whole fre-
quency range. This fact implies that the fewer PEs in the
hidden layer, the more information is lost in tranforming

inpuls lo outpuis as in data compression. On the con-
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Figute 7. Sequences of the noisy {vartance =0.1) and filtered sign-
als with two variable amplitudes (eq.(?)), and their
spectea (linear and not normalized). (a) Sequences of the
noise-free and fillered signals by the ANN wilk 10 PEs in
the hidden layer, (b} their amplitude spectra of the
noise-free and noisy signals and (¢} those of the filtered
signals with 3 PEs in the hidden tayer.

trary, the more PEs, the more detail {including noise) is

preserved.

4.3 Variable amplitudes and noise variance 0.1(Case [l)

To examine the adaptability of the ANN-based filter
against the noisy signals having variable amplitudes, the
ANN is tesicd with the signals generated by cyq.(2). As
secn in Table |, the signals have two toncs of variable am-
plitudes and notse of variance 0.1. In this case, the num-
ber of PEs in the input and output layers ts fixed for 19
while that in the hidden layer varies from 3 1o 10.

Figure 7 shows the scquences of the noisy and filtered
signals, and their amplitude spectra (linear and not nor-
malized). Compared with the noise-free signals, the signals
filtered with 10 PEs keep major signal signatures (Fig.
7a). Figure 7h presents the amplitude spectra of lhe noase-
free and noisy signals with noise variance 0.1, As can be
seen in the figure, two peaks exisl in bolh lypes of the
signals al the frequencies specifted in ¢q.(2), and fluctu-
attons duc (o noise last in the whole frequency range.
However, the spectra of the signals filtered with 3 PEs in
the hidden layer show almost no such uclwation imply-
ing thal the noise is fillered out.

The fact that the ANN can filtcr noise from the signals
having vartable amplitudes guarantees ats applicability to
a “real signals” which, in gencral, contaminaled by noise
and subject {0 change in their ampliludes.

4.4 Measured signats with variable amplitudes(Case IV)

The “rcal signals™ arc measurcd using the horizontal
line array having 11 acoustic scnsor clements. The sound
source transmils the signals of 4 tones ranging from 200
to 250 Hz for aboul 30 minutes.

Although the ransmitting signals are operated Lo keep
sleady constant power, Lhe receiving signals have no lon-
per steady constant power in lhe ocean, In gencral, (he
signals are embedded by notse and fluctuate (relative to a
sleady signals) over a period of time. Morcover, they may
be changed depending on receiver localions at a given
time. Coherence is defined as a measurc of the phasc and
amphtude relationship between sets of acoustic waves. In
the ocean, coberence is characterized by both temporal
and spatial variations. The effect of medium on smail-amn-
plitude wave propagation can be described in {erms ol co-
herence time, coherence bandwidth, spatial coherence and
angular coherence." Signal fluctuations can be caused by
a numbcer of physical processes including sourcefreceiver
molion, oceanic finc-scale features, internal waves and tides.

Through the previous study,” the measurcd signals are
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shown to have temporal fluctuations mainly caused by
source motion and multipaths ol the propagating waves,

The measused raw dala are transtormed by FFT and
pink noise is normalized by the OTA scheme. Pink noise,
being different ftom random noisc, is defined as that has
constant slope wilhin a limited range of frequency. Even
afler pink noise is normalized, there still remasns highly
fluclvating random noise in the trequency domain, The
ANN, having 1! PEs in the inpul and oulpul layers, and
5 PEs n the hidden layer, is applied 1o (ilter the random
noisc. For the traiming of the ANN. a block size of |1
samples arc selected randomly from (he normalized data.
Alter the traming is completed, the ANN is applicd 10 fil-
ter random noise from the normalized dala by the same
way in the previous cuscs.

Figure 8 presents three spectrograms {or the sipnals
measured on the 6th sensor of Lhe horizontal line array:
without [iltering, filtered by (he moving average, and
filtered by the ANN. The window of the moving average
is 11 (requency bins, The Ist picture (Fig. 8a) comes from
the dala normalized by the OTA scheme. I examined
carefully, the definile 4 signals can be scen but they are
severely conlaminaled by noise. The spectrogram of he
moving averaged dala (Fig. 8b} shows beiter picture 10
identify underlying 4 signals but noise level is still high.
Morcover, the four signals undergo frequency shilling
and spreading which ase cavsed by Lhe source movemenl
and multipaths of acoustic waves.” The last one (Fig. 8c)
is the spectrogram of the signals filtered by the ANN
with 5 PEs in the hidden layer. 1t gives much better pic-
ture lo idenlify delerministic 4 signals. In the hgure, it is
clear that the random noisc i1s almost suppressed. The
levels on Lhe vertical axis are sormalized between 0 and |
because they suffer scaling by the ANN which empiloys

sigmoidal activation [wnction.
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Freq Bin

Figure 8. Speclrograms of (he signals incasured on the 6th sensor
in the shallow sea. (a) Without filtering, () moving
avecaged wiltle the sive of 11 frequency bins and ()

Niicred by the ANN with § 'Ly in the hidden layer.

Table | Cases (o exumne the applicability of the ANN for fille-
Ying noisc.

—_ B T

- ————— q— ——

no. of lones/ | noise

case no. | signal (ype amiplitude type | variance FEtHarks
! synthesized | S/constang l 0.1 cq.(l'i' '
il | synthesized 1 Sjeonstant 1 0.5 | egd1)
I synthesized | 2/variable 011 g
L J measurcd | 4/variable variable |

Figure 9 shows another thiee spectrograms lor the
signals measured on the 7th sensor. As in Fig. 8, most of
the rundom noise is tillered in the spectrogram Lo which
the ANN 15 applicd (Fig. 9¢) while stll remains in others
(Fig. %a, b).

As a general technique, an ANN offers an interesting
and polentially powerul approach for notse Gitering. One
of the particularly iteresting characteristics of an ANN
is the capability to develop an adaptive liltering technigque
that can be tuned 1o preserve varying degrees ol detail '
Flowever, sipmlicant experimentalion remains to develop

these technigue ko lhe point where il s well characterized
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and wndcrstood.

(b)

Freq. 8in

Fig 9. Spectrograms of the signals measured on the 7th sensor
in (he shallow sca (a) Withou! fillering, (b) moving
averaped wilh the size of Il (requency bins and ()
filtered by the ANN with S PEs i the hidden layer.

V. Conclusion

In this study, we examine the applicability of an ANN

to Blter random notse from noisy signals. Two kinds of

signal, synthesized and measured, arc considered.

To conclude, the ANN is shown to filter random noise

and to cxiracl the wnderlying signals from the synthesized
or measured noisy signals. This ftltering process is achie-
ved wilhout using any mullibaud or specially destgned fil-
ter. The (raining data sel ) chosen to be independent of
the stgnad so that, velike convenGonal filters, the ANN-
based lilter requires no parameler estimation or priori
knowledge ol noise characteristics. Morcover, the ANN
converges very rapidly to the desired output during the
process of tearning, approaching almost 0 within 1000
ilerations.

In this arficle, il is just examined Lhe applicabilily ol an
ANN for Miltering underwiter random noise. Efforts are
direcling 10 the statistical characterization ol the ANN
such as its optimal struclure and tuning to preserve
varying degrees of detait. Much more experimentation
nceds to be conducled (o develop Lhis technique (o (he

level of complele underslanding.
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