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Abstract

In this study, we examine the applicability of an artificial neural network(ANN)for filtering underwater random noise 
and for identifying underlying signals taken from noisy environment. The approach is to find a way of compressing the in­
put data and then decompressing it using an ANN as in image compressing process. It is well known that random signal is 
hard to compress while ordered information is not. The use of a limited number of processing elements(PEs) in the hidden 
layer of an ANN ensures that some of the noise would be removed in the reconstruction process. Two types of the signals, 
synthesized and measured, are used to examine the effectiveness of the ANN-based filter. After training process is 
completed, the ANN successfully extracts the underlying signals from the synthesized or measured noisy signals. In particu­
lar, compared with the results from without filtering or moving averaged, the ANN-based filter gives much better 
spectrograms to identify unde미ying signals from the measured noisy data. This filtering process is achieved without using 
any kind of highly accurate signal processing technique. More experimentation needs to be followed to develop the 
ANN-based filtering technique to the level of complete understanding.

I. Introduction

In underwater environment, acoustic wave is the most 
powerful tool to detect targets. Although all other me­
thods such as MAD(magnetic anomaly detection), IR(in- 
fra-red) and radar play their parts in detecting under­
water targets, the only really successful and weil proven 
method to date is by the use of sound? There are four 
principal phases against targets: detection, classification, 
localization and strike. Among these, classification relies 
primarily on highly accurate signal processing techniques 
to filter random noise and to retain consistently recurring 
patterns. The most useful clue in classifying the target is 
the frequency information of the signal existing usually in 
the lower frequency. Hence, the low pass filter is often 
applied to filter out the higher frequency signal in classifi­
cation phase.

Many kinds of algorithms have been developed to filter 
noise from deterministic signals. Most general [ype of op­
timal filtering is known as Wiener filtering. Specifically, it 
is desired to use the present value, and the previous val­
ues of some length, to estimate the desired value. This is 
to be done for all values by a linear filter designed to min­

imize the mean-square error.2 The estimating process in­
evitably introduces errors and various other complications 
and brings up the whole issue of estimation of the model 
parameters. The Wiener filter req니ires a priori knowledge 
of the spectral properties of the noise-free signals.3 The 
popular linear models are the autoregressive(AR), moving 
average(MA), and autoregressive moving average(ARMA). 
Other non-linear filters have been developed which out- 
prtforms the Wiener filter and filters random noise with a 
priori knowledge of the signal characteristics.4 니owever, 
these filters wo니d be applied to a signal that is corrupEed 
with random noise of known strength and completely 
random.

An ANN-based filter has been partially applied to filter 
random noise from underlying signals.5 However, few at­
tempts have been made to deal with underwater acoustic 
signals which are corrupted with noise other than of ran­
dom. The underwater signals need to be processed before 
the ANN-based filter is applied to filter random noise.

In this study, we consider applications of an artificial 
neural network(ANN) based on the back-propagation le­
arning scheme to filter underwater random noise and to 
identify underlying signals taken from noisy environment. 
U이ike the conventional filters, an ANN-based filter requ­
ires no parameter estimation or priori knowledge of noise 
strength. As one of the learning schemes of an ANN, the 
back-propagation is a powerful adaptive technique for ap­



Filtering Random Noise from Deterministic Underwater Signals via Application of an Artificial Neural Network 5

proximating relationships between several continuous val­
ued inputs and one (or more) continuous valued output.5

The approach is to find a way of compressing the input 
data and then decompressing it as in image compression.6 
The main goal of image compression techniq니es is to 
store or transmit an image with a reduced number of bits 
and a limited distortion in the retrieval or reception. It is 
well known that random noise is hard to compress 
whereas ordered information is not. We use this property 
to filter random noise from noisy underwater signals. The 
compressing process removes portions of the input data, 
which represent small or nonrecurring features.

We consider an ANN having a limited number of pro- 
cessing elements(PEs) in the hidden layer to filter random 
noise. The use of a limited number of PEs ensures that 
some of the information (preferably the noise) would be 
removed during the reconstruction. We expect that the 
ANN-based filter would function as a low pass filter. Thr­
ough this study, the noise is assumed to be random and 
of a higher frequency than the underlying signal. Two 
types of sign^s are used in this study. One is synthesized 

signal and the other is measured one using acoustic sen­
sors in shallow water. In order to examine the effective­
ness of the ANN-based filter, spectrograms are presented 
for the measured signals.

II. Characteristics of Signal and Noise

We use two kinds of signals: synthesized and measured 
ones. The synthesized signals are sequences of constant 
and variable amplitudes contaminated by the while Gaus­
sian noise. The two synthesized signal sequences are gen­

erated using

:시끼 = [0.3sin(27m/100) +0.4sin(2两200) +0.3sin(2"/400)

+0.2 cos(27rw/l50) +0.3 cos(2^n/300) + 屮[n\ +1.5]
(1)

and

无2[씨그 -yy [nsin(6Tin/1024)-ncos{AQnnl 1024) +기2[씨 +2.이,

(2)

where X\ \n] = noisy signal sequence of 5 tones and con­
stant amplitude,

xi[n] = noisy signal sequence of 2 tones and vari­
able amplitude,

^z[n\ — noise sequence of mean of zero and vari­
ance of 0.1 or 0.5,

切[邳)-noise sequence of mean of zero and vari­
ance of 0.1, and w-0, 1, 2, ■■■, 1023.

The noise is assumed to be random and of a higher fre­
quency than the underlying signals. So, it is clear that the 
contribution of the noise to the signals will tend lo be 
random or nonstationary with respect to other larger fe­
atures. As a res니t, the noise will most likely be one of 
the features removed in the compressing process.

The meas니red signals have been collected in shallow wa­
ter, where the depth is around 150 m.7 The sound source, 
transmitting 4 tones in the frequencies of 204, 216, 229, 
and 240 Hz, was towed at speed of 10 kts and depth of 
20 m, while the receiver, the horizontal line array having 
11 sensor elements, was installed on the sea bottom. Data 
sampling rate in analog-to-digital conversion is 24.4 kHz. 
The digitized data are transformed into the frequency do­
main 니sing the fast Fouricr transform(FFT), the size be­
ing 이 '(or 2048).

Spectrograms are obtained by applying the Order Trun- 
cate AverageiOTA)8 9 normalizer. The process of whiten­
ing the noise spectrum is called normalization and is ma­
thematically defined by where Xk is the mag­
nitude in bin k and 卩虑 is the noise mean estimate in bin k. 
The OTA normalizer was developed in 1978 by Wolcin.10 
The following steps describe the OTA scheme briefly ：(1) 

The K bin values in the particular set Qk are ordered to 
form a new sequence (Yi,匕，…，丫& where Y1 is the 
smallest, and YK is the largest. (2) The sample median YM 
is identified, and all bins having values greater than r YM 
are excluded (a value r is given by 1.4 in this study). As­
sume L bins remain after the exclusion process. (3) The 
noise mean estimate 凹 is then obtained using the L re­
maining bins：

'Y 四=£ 스. ⑶

i— 1 L，

The details of the OTA scheme are given in the previous 
study.7

The normalized signals are applied to the ANN in or­
der to filter random noise in the frequency domain. For 
the comparison, the moving average (11 frequency bins of 
size) is also employed. The spectrograms of the filtered 
signals are compared with those of without filtering and 
of the moving averaged.

ID. Application of an AN시

The unique characteristics of an ANN approach is that 
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the output of the weighted sum (linear combination of 
the inputs) is transformed using a nonlinear function such 
as a sigmoid or sine function. These nonlinearities make 
the creation of multilevel systems possible and are re­
sponsible for several resultant characteristics."

The ANN employed in this study is the semilinear feed­
forward network having 3 layers of input, hidden, and 
output. Figure 1 shows the architecture of the network. 
The number of PEs in the input and output layers is 
chosen as 19 for the synthesized signals, while it is 11 for 
the measured signals. The number of PEs in the hidden 
layer varies from 3 to 11 both for the synthesized and 

measured signals.
The network is known to have a greater capability to 

get arbitrary complex nonlinear mappings and to gener­
alize from given data than the linear perceptron.12 The 
outputs of PEs in one layer arc transmitted to PEs in 
another layer through links that amplify or inhibit the 
outputs by multiplying weighting factors. The net input 
to ^th PE, yky is the sum of the weighted outputs of the 
PEs in the prior layer:

>*=  L (4)
}

where Wk} is the weighting factor for the jth PE in the 
previous layer transmitting lo the ^th PE and Oj is the 
output from the jth PE in the previous layer. The activity 
of each PE is determined by its input and its activation 
function together with an associated bias term. Thus the 

output of /th PE is,

，=六为) ⑸

where f is the activation function. In this study, a sig­
moidal activation function is employed as following：

n. =_________ !---------------- (6)
} 1 +exp[-(>；

where Oj is the bias term.
The learning process is as follows：The network starts 

off with a random set of weight values. One of the train­
ing set patterns p is chosen. Using this pattern as input, 
the outputs are calculated in a feedforward manner. In 
general, the outputs o蚀 will not be the same as the target 
values tPk. For each pattern, the mean square error(MSE) 
E is defined by

~■ E L (tpk^Opkf. (7)
2p k

The corrections to the weights are made by taking sm­
all changes (A紗)proportional to —dE/dWji as follows： 
Using the back-propagation scheme,'3 the network calcul­
ates A/, Wjt for all the for that particular p, where

dj = ~dE/dyj, and rj = constant. This pro­
cedure is repeated for all the patterns in the training set 
to yield the res니ting Awyi- for all the weights for that one 
iteration ； that is,

= E \pW}i. (8)
p

In a successful learning exercise, the MSE will decrease 
with the number of iterations, and the procedure will con­
verge to a stable set of weights.

The way we train the network is to randomly select a 
block of 19 (or 11) sequencial samples from the noisy sig­
nal sequence, and to use this as both the input and de­
sired output of the network. This is subjected to repeat 
100000 times for each of the networks, which takes about 
1 minute on the Convex C3420 system. In fact, however, 
the ANN converges very rapidly during the process of 
training. Figure 2 shows the mean square error(MSE) for 
the ANN having 19 PEs in the input and output layers, 
and 5 PEs in the hidden layer. It can be shown that the 
MSE approaches almost 0 within the iteration number 
1000. Each time a block of inputs is applied to the net­

Hidden Layer

Input Layer

Output Layer D \9 (or 11 ) PEs

3-11 Var i abIe PEs

O 19 (or 11) PEs

Rias

Figure 1. ANN architecture having 3 layers of input, hidden and 
output.
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work, the weights are slightly adjusted to make the actual 
network output closer to the desired output.

MSE tor na：S6 var=0.1
q 4 5-------------------- ------------ ---------------- --- -- ------------—f------------------------------------------- ------- ----—
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4.1 Constant amplitudes and noise variance 0.1 (Case J.)

Figure 4 shows the sequences of the noisy and filtered 
signals with 5 tones and constant amplitudes. The noisy 
signal is generated by eq.(l) of which noise is mean 0 and 
variance 0.1. The signal filtered by 나le ANN with 3 PEs 
in the hidden layer (Fig. 4b) gives the patterns similar to 
the noise-free signals but gives somewhat unreasonable 
ones particularly on the lower peaks. The signal with 11 
PEs (Fig. 4c) gives better results and reconstructs almost 
all signatures of the noise-free signals. That is, they also 
give major signal patterns but no longer unreasonable 
results as seen in those with 3 PEs in the hidden layer.

0.05 - •

io2 w1 104
11cI .Ic,r) Number

Figure 2. Mean square error with iteration number in the process 
of the ANN training.

During the recall process, the noisy signal set is shifted 
through a 19-element long shift register and the output is 
computed with that of inputs. The signal is shifted one 
position and the process is repeated like the way in the 
moving average (Fig. 3). Only the middle output element 
is used as the filtered output.

,bQ auo 40Q 600 700 100 SOO 1000
Tlm« Sequence

y[n]

Noi sy S：gnaIs

1st y !
2nd I L

3rd Y
Fi Itered Signals

Center Element

Figure 3. Filtering process using the ANN. Recalling data is re­
peated by shifting one position through a 19-element 
long register.

IV. Results and Discussi이is

The filtered results by applying the ANN are obtained 
for four cases: two cases for the synthesized signals with 
constant amplitude, one case for the synthesized signals 
with variable amplitude and the other for the measured 
signals. Table 1 summarizes all cases. All types of signals 
are scaled in order to confine their amplitudes in between 
0 and 1. This is necessary because we use a sigmoidal ac­
tivation function in our all applications.

5
-

- - J

o 
0 200 400 SOO 100 1000

Tira Sequ«nc<

Figure 4. Sequences of the noisy and filtered signals by the ANN. 
(a) Noisy signals with noise variance 0.1. Filtered signals 
with (b) 3 PEs (c) 11 PEs in the hidden layer.
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In filtering process, only the middle output element (i. 
e., the 10th element among 19 output elements) is used as 
the filtered output. This is reasonable because when we 
are to have only one output element that is trained to 
produce the value of the middle input, the output is affec­
ted almost exclusively by the center input, all other inputs 
being ignored.5

4.2 Constant amplitudes and noise variance 0.5(Case U )

Case II is same with Case I except the noise variance is 
increased from 0.1 to 0.5. This case is aimed lo examine 
the applicability of the ANN-based filter against the 
noisy signals with increased noise level.

Figure 5 presents the sequences of the filtered signals 
with 3 and 11 PEs in the hidden layer. At a glance, 나ic 
two res니Is show that most of the underlying sign시s are 
retained while noise is greatly filtered out.

50
40
30
20

브

즈

8

 도

exist 5 tones as expected in eq.(l)- The filtered results 
with 6 PEs (Fig. 6b) 아low that most of the noise is fil­
tered in the higher frequency region measured from bin 
number 150 but still remained in the lower region. When 
the number of PE in the hidden layer is decreased to 3 

FFT Magnitude for noise var=0.5 PE #=5

Figure 5. Signal sequences filtered by the ANN for the noisy sign­
als generated by eq. (1) having noise variance 0.5: with 
(a) 3 PEs and (b) 11 PEs in the hidden layer.

60
50
40
30
20
10

e
p

그
-
sms

Figure 6. Am미itude spectra (linear and not normalized) of the 
noisy and filtered signals, (a) Noisy signals with noise 
variance 0.5 (eq.(l)) and the filtered signals by the ANN 
with (b) 6 PEs and (c) 3 PEs in 나k hidden layer.

50 100 150 200 250 300 350400450500
Frequancv BinTo examine the characteristics of the ANN-based filter, 

the amplitude spectra are determined for the noisy and 
filtered signals (Fig. 6). Figure 6a shows the amplitude 
spectra (linear and not normalized) with frequency bins 
for 나le noisy signals. In the figure, it is evident that there
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(Fig. 6c), most of the noise is filtered in the whole fre­
quency range. This fact implies that the fewer PEs in the 
hidden layer, the more information is lost in tranforming 
inputs to outputs as in data compression. On the con­

100 200 300 400 500 600 70Q 800 90。 1000
Time Sequence

FFT plot for nonlinear amp.: nonlOl .raw
80 r-'-------- r------------ »------------ 1------------ 1 1 1 1

(b)

% so 100 150 200 250 300 350 400 450 500
Frequency Bin

FfT plot for nonlinear amp. signa!: nonl01 res 
80 

70 

60

50
40
30 

흥

그

유

20

10

"o 50 100 15b 200 250 300 350 400 450 500
Frequency Bin

Figure 7. Sequences of the noisy (variance = 0.1) and filtered sign­
als with two variable amplitudes (eq.(2)), and their 
spectra (linear and not normalized), (a) Sequences of the 
noise-free and filtered signals by the ANN with 10 PEs in 
the hidden layer, (b) their amplitude spectra of the 
noise-free and noisy signals and (c) those of the filtered 
signals with 3 PEs in the hidden layer.

trary, the more PEs, the more detail (including noise) is 
preserved.

4.3 Variable amplitudes and noise variance 0.1 (Case DI)

To examine the adaptability of the ANN-based filter 
against the noisy signals having variable amplitudes, the 
ANN is tested with the signals generated by eq.(2). As 
seen in Table 1, the signals have two tones of variable am­
plitudes and noise of variance 0.1. In this case, the num­
ber of PEs in the input and output layers is fixed for 19 
while that in the hidden layer varies from 3 to 10.

Figure 7 shows the sequences of the noisy and filtered 
signals, and their amplitude spectra (linear and not nor- 
m시ized). Compared with the noise-free signals, the signals 
filtered with 10 PEs keep major signal signatures (Fig. 
7a). Figure 7b presents the amplitude spectra of the noise- 
free and noisy signals with noise variance 0.1. As can be 
seen in the fig니rc, two peaks exist in both types of the 
signals at the frequencies specified in eq.(2), and fluctu­
ations d나e to noise last in the whole frequency range. 
너owever, the spectra of the signals filtered with 3 PEs in 
the hidden layer show almost no such fluct니ation imply­
ing that the noise is filtered out.

The fact that the ANN can filter noise from the signals 
having variable amplitudes guarantees its applicability to 
a Mreal signals**  which, in general, contaminated by noise 
and subject to change in their amplitudes.

4.4 Measured signals with variable amplitudes]Case IV)

The “real signals" are measured using the horizontal 
line array having 11 acoustic sensor elements. The sound 
source transmits the signals of 4 tones ranging from 200 
to 250 Hz for about 30 minutes.

Although the transmitting signals are operated to keep 
steady constant power, the receiving signals have no lon­
ger steady constant power in the ocean. In general, the 
signals are embedded by noise and fluctuate (illative to a 
steady signals) over a period of time. Moreover, they may 
be changed depending on receiver locations at a given 
time. Coherence is defined as a measure of the phase and 
amplitude relationship between sets of acoustic waves. In 
the ocean, coherence is characterized by both temporal 
and spatial variations. The effect of medium on small-arn- 
plitude wave propagation can be described in terms of co­
herence time, coherence bandwidth, spatial coherence and 
angular coherence.14 Signal fluctuations can be caused by 
a number of physical processes including source/receiver 
motion, oceanic fine-scale features, internal waves and tides. 
Through the previous study,7 the measured signals are 
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shown to have temporal fluctuations mainly caused by 
source motion and multipaths of the propagating waves.

The measured raw data are transformed by FFT and 
pink noise is normalized by the OTA scheme. Pink noise, 
being different from random noise, is defined as that has 
constant slope within a limited range of frequency. Even 
after pink noise is normalized, there still remains highly 
fluctuating「andom noise in the frequency domain. The 
ANN, having 11 PEs in the input and output layers, and 
5 PEs in the hidden layer, is applied to filter the random 
noise. For the training of the ANN, a block size of 11 
samples are selected randomly from the normalized data. 
After 나】e training is completed, 나le ANN is applied to fil­
ter random noise from the normalized data by the same 
way in the previous cases.

Figure 8 presents three spectrograms for the signals 
measured on the 6th sensor of the horizontal line array: 
without filtering, filtered by the moving average, and 
filtered by the ANN. The window of 나)e moving average 
is 11 frequency bins. The 1st picture (Fig. 8a) comes from 
the data normalized by the OTA scheme. If examined 
carefully, the definite 4 signals can be seen but they are 
severely contaminated by noise. The spectrogram of the 
moving averaged data (Fig. 8b) shows better picture to 
identify underlying 4 signals but noise level is still high. 
Moreover, the four signals 나nderg。frequency shifting 
and spreading which are caused by the source movement 
and multipaths of acoustic waves.7 The last one (Fig. 8c) 
is the spectrogram of the signals filtered by the ANN 
with 5 PEs in the hidden layer. It gives much better pic­
ture to identify deterministic 4 signals. In the figure, it is 
clear that the random noise is 시mosl suppressed. The 
levels on the vertical axis are normalized between 0 and I 
because they suffer scaling by the ANN which employs a 
sigmoidal activation function.

20

Freq Bin

Figure 8. Spectrograms of the signals measured on the 6th sensor 
in the shallow sea. (a) Witho니 filtering, (b) moving 
averaged with the size of 11 frequency bins and (c) 
filtered by (he ANN with 5 PEs in the hidden layer.

Ta이e 1. Cases to examine the applicability of the ANN for filte­
ring noise.

no. of tones/ noise 1case no. signal type amplitude type variance remarks

I symhesized 5/constanl 0.1 eq.⑴
il synthesized 5/conslant 0.5 eq.⑴
ni synthesized 2/variable 0.1 eq.⑵
IV measured 4/variable variable

Freq. Bin

Figure 9 shows another three spectrograms for the 
signals measured on the 7th sensor. As in Fig. 8, most of 
the random noise is- filtered in the spectrogram to which 
the ANN is applied (Fig. 9c), while still remains in others 
(Fig. 9a, b).

As a genera] technique, an ANN offers an interesting 
and potentially powerful approach for noise filtering. One 
of the particularly interesting characteristics of an ANN 
is the capability to develop an adaptive filtering technique 
that can be tuned to preserve varying degrees of detail.14 
However, signiHcanl expenmentation remains to develop 
these techniquc to the point where it is well characterized
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and understood.

Fig 9. Spectrograms of the signals measured on the 7th sensor 
in the shallow sea, (a) Without filtering, (b) moving 
averaged with the size of 11 frequency bins and (c) 
filtered by the ANN with 5 PEs in the hidden layer.

V, Conclusion

In this study, we examine the applicability of an ANN 
to filter random noise from noisy signals. Two kinds of 
signal, synthesized and measured, are considered.

To conclude, the ANN is shown to filter random noise 

and to extract the underlying signals from the synthesized 
or measured noisy signals. This filtering process is achie­
ved without using any multiband or specially designed fil­
ter. The training data set is chosen to be independent of 
the signal so that, unlike conventional filters, the ANN- 
based filter requires no parameter estimation or priori 
knowledge of noise characteristics. Moreover, the ANN 
converges very rapidly to the desired output during the 
process of learning, approaching almost 0 within 1000 
iterations,

In this arti이e, it is just examined the applicability of an 
ANN for filtering underwater random noise. Efforts are 
directing to the statistical characterization of the ANN 
such as its optimal structure and tuning to preserve 
varying degrees of detail. Much more experimentation 
needs to be conducted to dev비op this technique to the 
level of complete understanding.
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