• Title/Summary/Keyword: Filtered Backprojection

Search Result 32, Processing Time 0.023 seconds

An Optimized GPU based Filtered Backprojection method (범용 그래픽스 하드웨어 기반 여과후 역투사 최적화 기법에 관한 연구)

  • Park, Jong-Hyun;Lee, Byeong-Hun;Lee, Ho;Shin, Yeong-Gil
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.436-442
    • /
    • 2009
  • Tomography images reconstructed from conebeam CT make it possible to observe inside of the projected object without any damage, and so it has been widely used in the industrial and medical fields. Recent advanced imaging equipment can produce high-resolution CT images. However, it takes much time to reconstruct the obtained large dataset. To reduce the time to reconstruct CT images, we propose an accelerating method using GPU (graphics processing unit). Reconstruction consists of mainly two parts, filtering and back-projection. In filtering phase, we applied 4ch image compression method and in back-projection phase, computation reduction method using depth test is applied. The experimental results show that the proposed method accelerates the speed 50 times than the CPU-based program optimized with OpenMP by utilizing the high-computing power of parallelized GPU.

  • PDF

An adaptive nonlocal filtering for low-dose CT in both image and projection domains

  • Wang, Yingmei;Fu, Shujun;Li, Wanlong;Zhang, Caiming
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.113-118
    • /
    • 2015
  • An important problem in low-dose CT is the image quality degradation caused by photon starvation. There are a lot of algorithms in sinogram domain or image domain to solve this problem. In view of strong self-similarity contained in the special sinusoid-like strip data in the sinogram space, we propose a novel non-local filtering, whose average weights are related to both the image FBP (filtered backprojection) reconstructed from restored sinogram data and the image directly FBP reconstructed from noisy sinogram data. In the process of sinogram restoration, we apply a non-local method with smoothness parameters adjusted adaptively to the variance of noisy sinogram data, which makes the method much effective for noise reduction in sinogram domain. Simulation experiments show that our proposed method by filtering in both image and projection domains has a better performance in noise reduction and details preservation in reconstructed images.

3-D High Resolution Ultrasonic Transmission Tomography and Soft Tissue Differentiation

  • Kim Tae-Seong
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.1
    • /
    • pp.55-63
    • /
    • 2005
  • A novel imaging system for High-resolution Ultrasonic Transmission Tomography (HUTT) and soft tissue differentiation methodology for the HUTT system are presented. The critical innovation of the HUTT system includes the use of sub-millimeter transducer elements for both transmitter and receiver arrays and multi-band analysis of the first-arrival pulse. The first-arrival pulse is detected and extracted from the received signal (i.e., snippet) at each azimuthal and angular location of a mechanical tomographic scanner in transmission mode. Each extracted snippet is processed to yield a multi-spectral vector of attenuation values at multiple frequency bands. These vectors form a 3-D sinogram representing a multi-spectral augmentation of the conventional 2-D sinogram. A filtered backprojection algorithm is used to reconstruct a stack of multi-spectral images for each 2-D tomographic slice that allow tissue characterization. A novel methodology for soft tissue differentiation using spectral target detection is presented. The representative 2-D and 3-D HUTT images formed at various frequency bands demonstrate the high-resolution capability of the system. It is shown that spherical objects with diameter down to 0.3㎜ can be detected. In addition, the results of soft tissue differentiation and characterization demonstrate the feasibility of quantitative soft tissue analysis for possible detection of lesions or cancerous tissue.

Image Reconstruction of Sinogram Restoration using Inpainting method in Sparse View CT (Sparse view CT에서 inpainting 방법을 이용한 사이노그램 복원의 영상 재구성)

  • Kim, Daehong;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.655-661
    • /
    • 2017
  • Sparse view CT has been widely used to reduce radiation dose to patient in radiation therapy. In this work, we performed sinogram restoration from sparse sampling data by using inpainting method for simulation and experiment. Sinogram restoration was performed in accordance with sampling angle and restoration method, and their results were validated with root mean square error (RMSE) and image profiles. Simulation and experiment are designed to fan beam scan for various projection angles. Sparse data in sinogram were restored by using linear interpolation and inpainting method. Then, the restored sinogram was reconstructed with filtered backprojection (FBP) algorithm. The results showed that RMSE and image profiles were depended on the projection angles and restoration method. Based on the simulation and experiment, we found that inpainting method could be improved for sinogram restoration in comparison to linear interpolation method for estimating RMSE and image profiles.

Effect of Image quality and Radiation Dose using Iterative Reconstruction in Adult and Pediatric CT: A Phantom Study (성인과 소아 CT 촬영시 IR 적용에 따른 영상화질 및 선량에 미치는 영향)

  • Ju, A-ran;Jo, Jung-Hyun;Oh, Young-Kyu;Kim, Kyoung-Ki;Lee, Soo-Been;Jeon, Pil-Hyun;Kim, Daehong
    • The Korean Journal of Food & Health Convergence
    • /
    • v.4 no.1
    • /
    • pp.23-31
    • /
    • 2018
  • The main issue of CT is radiation dose reduction to patient. The purpose of this study was to estimate the image quality and dose by iterative reconstruction (IR) for adults and pediatrics. Adult and pediatric images of phantom were obtained with 120 and 140 kV, respectively, in accordance with radiation dose in terms of volume CT dose index ($CTDI_{vol}$): 10, 15, 20, 25, 30, 35 mGy. Then, the adult and the pediatric images are reconstructed by filtered-backprojection (FBP) and iterative reconstruction (IR). The images were analyzed by signal-to-noise ratio (SNR). SNR is improved when IR and 140 kV are applied to acquire adult and pediatric images. In the adult abdomen, according to diagnostic reference level, the SNR values of bone were increased about 27.84 % and 27.77 % at 120 kV and 140 kV, and the tissue's SNR values of the IR were increased about 29.84 % and 33.46 % 120 and 140 kV, respectively. Dose is reduced to 40% in adults abdomen images when using IR reconstruction. In pediatric images, the bone's SNR were also increased about 17.70% and 18.17 % at 120 kV and 140 kV. The tissue's SNR were increased about 26.73 % and 26.15 % at 120 kV and 140 kV. Radiation dose is reduced from 30% to 50% for bone and tissue images. In the case of examinations for adult and pediatric CT, IR technique reduces radiation dose to patient, and it could be applied to adult and pediatric imaging.

Anisotropic Total Variation Denoising Technique for Low-Dose Cone-Beam Computed Tomography Imaging

  • Lee, Ho;Yoon, Jeongmin;Lee, Eungman
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.150-156
    • /
    • 2018
  • This study aims to develop an improved Feldkamp-Davis-Kress (FDK) reconstruction algorithm using anisotropic total variation (ATV) minimization to enhance the image quality of low-dose cone-beam computed tomography (CBCT). The algorithm first applies a filter that integrates the Shepp-Logan filter into a cosine window function on all projections for impulse noise removal. A total variation objective function with anisotropic penalty is then minimized to enhance the difference between the real structure and noise using the steepest gradient descent optimization with adaptive step sizes. The preserving parameter to adjust the separation between the noise-free and noisy areas is determined by calculating the cumulative distribution function of the gradient magnitude of the filtered image obtained by the application of the filtering operation on each projection. With these minimized ATV projections, voxel-driven backprojection is finally performed to generate the reconstructed images. The performance of the proposed algorithm was evaluated with the catphan503 phantom dataset acquired with the use of a low-dose protocol. Qualitative and quantitative analyses showed that the proposed ATV minimization provides enhanced CBCT reconstruction images compared with those generated by the conventional FDK algorithm, with a higher contrast-to-noise ratio (CNR), lower root-mean-square-error, and higher correlation. The proposed algorithm not only leads to a potential imaging dose reduction in repeated CBCT scans via lower mA levels, but also elicits high CNR values by removing noisy corrupted areas and by avoiding the heavy penalization of striking features.

Usefulness of Xact-bone for the Resolution Advancement of Gamma Camera Image (감마카메라 영상에서 분해능 향상을 위한 Xact-bone의 유용성 평가)

  • Kim, Jong-Pil;Yoon, Seok-Hwan;Lim, Jung-Jin;Woo, Jae-Ryong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.30-35
    • /
    • 2011
  • Purpose: The Boramae Hospital are currently using Wide beam reconstruction (WBR: UltraSPECT, Israel) to improve the resolution. The Xact-bone belongs to the WBR. It has been reported that Xact-bone helps us to improve image resolution and contrast. This study will be evaluated clinical usefulness of Xact-bone method. Materials and Methods: The usefulness evaluation of Xact-bone method was analyzed in resolution test and contrast ratio. The resolution test in Planar image were obtained from Full width at half maximum (FWHM) by using capillary tube. And the contrast ratio was obtained from Bone and Soft tissue (B/S) ratio values that were acquired from bone scan study of 50 patients before and after using the Xact-bone method. We prepared the Triple Line Source Phantom, NEMA IEC Body Phantom and Standard Jaszczak Phantom to acquire the FWHM and Contrast Ratio values of Single photon emission computed tomography (SPECT) image. Subsequently we compared among the Filtered backprojection (FBP), Orderd subset expectation maximization (OSEM) and Xact-Bone image. Results: The results of the planar Xact-bone data improved resolution about 20% by using capillary tube. In addition it was improved B/S ratio about 15%. When using Triple Line Source Phantom, SPECT Xact-bone data improved resolution for both FBP, OSEM methods about 20% and 10%, respectively. Contrast ratio in each spheres has also been increased for both methods that using NEMA IEC body Phantom and Standard Jaszczak Phantom. Conclusion: When we were using Xact-bone method, we could see to improve the resolution and Contrast ratio as compared to do not use the Xact-bone method. Accordingly, by using WBR's Xact-bone method is expected to improve the image quality. However, when introducing new software, it is needed to match the characteristics of the hospital protocol and clinical application.

  • PDF

Artifactual Perfusion Defects due to the Parameters of Reconstruction Filter in Tc-99m-MIBI Myocardial SPECT Images (Tc-99m-MIBI 심근 SPECT 영상에서 재구성 필터에 의한 인위적 관류결손에 관한 연구)

  • Kwark, Cheol-Eun;Lee, Kyung-Han;Lee, Dong-Soo;Park, Yong-Woo;Chung, June-Key;Lee, Myung-Chul;Seo, Joung-Don;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.1
    • /
    • pp.41-47
    • /
    • 1995
  • Tc-99m-MIBI(Sestamibi) myocardial SPECT along with T1-201 tomographic imaging has demonstrated wide application and high image qualify sufficient for the diagnosis of myocardial perfusion defect, which consequently reflects regional myocardial blood flow, The qualitative values of myocardial SPECT with Tc-99m-MIBI as well as the quantitative cases depend in some degree on the reconstruction techniques of multiple projections. Filtered backprojection(FBP) is the common standard for reconstruction rather than the complicated and time-consuming arithmetic methods. In FBP it Is known that the distribution of radioactivity in reconstructed transverse slices varies with the selected filter parameters such as cutoff frequencies and order(Butterworth case). The cutoff frequencies basically remove and decrease the true radioactive distribution and alter the pixel counts, which lead to underestimation of true counts in specific myocardial regions. In this study, we have investigated the effect of cutoff frequencies of reconstruction filter on the artifactually induced perfusion defects, which are often demonstrated near inferior and/or inferoseptal cardiac walls due to the intense hepatic uptake of Tc-99m-MIBI. A computerized method for identifying the relative degree of artifactual perfusion defect and for comparing those degrees along with the relative amount of hepatic uptake to myocardium was developed and patient images were studied to observe the quantitative degree of underestimation of myocardial perfusion, and to propose some reasonable thresh-old of cutoff frequency in the diagnosis of perfusion defect quantitatively. We concluded that from the quantitative viewpoint cutoff frequencies may be used as high as possible with the sacrifice of homogeneity of image quality, and those frequencies lower than the common 0.3 Nyquist frequency would reveal severe degradation of radio-active distribution near inferior and/or Inferoseptal myocardium when applying Butterworth or low pass filter.

  • PDF

Compressed-sensing (CS)-based Image Deblurring Scheme with a Total Variation Regularization Penalty for Improving Image Characteristics in Digital Tomosynthesis (DTS) (디지털 단층합성 X-선 영상의 화질개선을 위한 TV-압축센싱 기반 영상복원기법 연구)

  • Je, Uikyu;Kim, Kyuseok;Cho, Hyosung;Kim, Guna;Park, Soyoung;Lim, Hyunwoo;Park, Chulkyu;Park, Yeonok
    • Progress in Medical Physics
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • In this work, we considered a compressed-sensing (CS)-based image deblurring scheme with a total-variation (TV) regularization penalty for improving image characteristics in digital tomosynthesis (DTS). We implemented the proposed image deblurring algorithm and performed a systematic simulation to demonstrate its viability. We also performed an experiment by using a table-top setup which consists of an x-ray tube operated at $90kV_p$, 6 mAs and a CMOS-type flat-panel detector having a $198-{\mu}m$ pixel resolution. In the both simulation and experiment, 51 projection images were taken with a tomographic angle range of ${\theta}=60^{\circ}$ and an angle step of ${\Delta}{\theta}=1.2^{\circ}$ and then deblurred by using the proposed deblurring algorithm before performing the common filtered-backprojection (FBP)-based DTS reconstruction. According to our results, the image sharpness of the recovered x-ray images and the reconstructed DTS images were significantly improved and the cross-plane spatial resolution in DTS was also improved by a factor of about 1.4. Thus the proposed deblurring scheme appears to be effective for the blurring problems in both conventional radiography and DTS and is applicable to improve the present image characteristics.

A Study on the Ordered Subsets Expectation Maximization Reconstruction Method Using Gibbs Priors for Emission Computed Tomography (Gibbs 선행치를 사용한 배열된부분집합 기대값최대화 방출단층영상 재구성방법에 관한 연구)

  • Im, K. C.;Choi, Y.;Kim, J. H.;Lee, S. J.;Woo, S. K.;Seo, H. K.;Lee, K. H.;Kim, S. E.;Choe, Y. S.;Park, C. C;Kim, B. T.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.5
    • /
    • pp.441-448
    • /
    • 2000
  • 방출단층영상 재구성을 위한 최대우도 기대값최대화(maximum likelihood expectation maximization, MLEM) 방법은 영상 획득과정을 통계학적으로 모델링하여 영상을 재구성한다. MLEM은 일반적으로 사용하여 여과후역투사(filtered backprojection)방법에 비해 많은 장점을 가지고 있으나 반복횟수 증가에 따른 발산과 재구성 시간이 오래 걸리는 단점을 가지고 있다. 이 논문에서는 이러한 단점을 보완하기 위해 계산시간을 현저히 단축시킨 배열된부분집합 기대값최대화(ordered subsets expectation maximization. OSEM)에 Gibbs 선행치인 membrance (MM) 또는 thin plate(TP)을 첨가한 OSEM-MAP (maximum a posteriori)을 구현함으로써 알고리즘의 안정성 및 재구성된 영상의 질을 향상시키고자 g나다. 실험에서 알고리즘의 수렴시간을 가속화하기 위해 투사 데이터를 16개의 부분집합으로 분할하여 반복연산을 수행하였으며, 알고리즘의 성능을 비교하기 위해 소프트웨어 모형(원숭이 뇌 자가방사선, 수학적심장흉부)을 사용한 영상재구성 결과를 제곱오차로 비교하였다. 또한 알고리즘의 사용 가능성을 평가하기 위해 물리모형을 사용하여 PET 기기로부터 획득한 실제 투사 데이터를 사용하였다.

  • PDF