• Title/Summary/Keyword: Film Cooling Method

Search Result 118, Processing Time 0.025 seconds

A Study on Enhanced of Anti-scratch performance of Nanostructured Polymer Surface (고분자 나노 표면의 내스크래치 특성 향상 연구)

  • Yeo, N.E.;Cho, W.K.;Kim, D.I.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.41-46
    • /
    • 2017
  • In this study, rapid cooling method was proposed to improve the anti-scratch performance of anti-reflection film fabricated by nanoimprint lithography. Effects of cooling time on the mechanical properties and optical properties were evaluated. Pencil hardness measurements showed that anti-scratch performance enhanced as the cooling time increased while characterization on the optical property showed that reflectance on scratch increased as the cooling time increased. Therefore, it was concluded that the anti-scratch performance and optical properties are highly influenced by the cooling time. The observed results explained in terms of residual stress and free volume in polymeric materials.

Influence of Process Parameters on the Breathable Film Strength of Polymer Extrusion (고분자압출의 공정변수가 통기성필름강도에 미치는 영향)

  • Choi, Man-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.625-632
    • /
    • 2012
  • Optimization of process parameters in polymer extrusion is an important task to reduce manufacturing cost. To determine the optimum values of the process parameters, it is essential to find their influence on the strength of polymer breathable thin film. The significance of six important process parameters namely, extruder cylinder temperature, extruder speed, extruder dies temperature, cooling roll temperature, stretching ratio, stretching roll temperature on breathable film strength of polymer extrusion was determined. Moreover, this paper presents the application of Taguchi method and analysis of variance (ANOVA) for maximization of the breathable film strength influenced by extrusion parameters. The optimum parameter combination of extrusion process was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that extruder speed and stretching ratio were the most influential factor on the film strength, respectively. The best results of film strength were obtained at higher extruder speed and stretching ratio.

Experimental Study of Moisture Vapor Transmission Rate(MVTR) for Breathable Film (통기성필름의 투습도에 관한 실험적 연구)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.81-86
    • /
    • 2016
  • Moisture vapor transmission rate (MVTR) is an important item for many applications of polymer breathable thin film. To determine the optimum values of the process parameters, it is essential to find their influence on The significance of six important process parameters namely, extruder cylinder temperature, extruder speed, extruder dies temperature, cooling roll temperature, stretching ratio, stretching roll temperature on breathable film strength of polymer extrusion was determined. Moreover, this paper presents the application of Taguchi method and analysis of variance (ANOVA) for maximization of the breathable film MVTR influenced by extrusion parameters. The optimum parameter combination of extrusion process was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that extruder speed and stretching ratio were the most influential factor on the film strength, respectively. The best results of film MVTR were obtained at higher extruder speed and stretching ratio.

The crystallinity and electrical characteristics of low density polyetylene thin film (저밀도 폴리에틸렌 필림의 결정화도 및 전기적 특성)

  • 윤중락;권정열;이헌용
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.164-168
    • /
    • 1996
  • The relation between crystallinity and thermal history in low density polyethylene thin films and their effect on electric conduction phenomena and dielectric breakdown was studied. The low density polythylene thin films obtained by the solution growth method heat-treated at 140[$^{\circ}C$] for 2 h and subsequently cooling to various ways. The degree of crystallinity was estimated by the X-ray diffraction measurement for the specimen of slowly cooling, ICE quenching and liquid nitrogen quenching. The result shows that the crystallinity decreases become faster as the cooling speed increased, and that conduction phenomenon is governed by the space charge limited current in high field. It was found that the dielectric breakdown field increases with an increase in cooling speed and test number in self-healing breakdown method.

  • PDF

A Comparative Analysis of Life Cycle Cost on the Window Glass and the Insulation Film Coated Glass for Window (창호 유리의 단열필름 시공에 따른 생애주기비용 비교 분석)

  • Jeong, Mingu;Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.583-590
    • /
    • 2014
  • The purpose of this study is to analyze and compare the life cycle cost of window glass with insulation film and regular glass, to verify an economical window construction method. As an approach method, the thermal performance data of each type of glass was measured using Window 6.3 and ECO2-OD Simulation Program, applied it to the case building to calculate the air conditioning and heating maintenance costs and LCC, and compared the economic feasibility. As a result, installing an additional insulation film prevents the solar heat penetration in the summer, so it reduces the cooling cost, on the other hand, it increased heating cost in winter. From the life cycle cost perspective, the effect of cooling cost reduction does not counterbalance the increase in heating cost and the additional cost from film installation and repair; therefore, the installation of insulation film may not be a proper method.

Effects of changing the oxygen partial pressure in cooling after deposition of PZT thin films by reactive sputtering (Reactive sputtering법에 의한 PZT 박막 증착후 냉각시 산소분압의 영향에 관한 연구)

  • 이희수;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.406-414
    • /
    • 1996
  • We studied the phase formation and the effect of electrical properties of PZT thin films with changing the oxygen partial pressure in cooling after deposition of PZT thin film by reactive sputtering method. The roughness of thin film increased with decreasing the oxygen partial pressure in cooling due to the evaporation on the surface ofthin films and the grain size was not changed very much. The hysteresis property of PZT thin film was improved toward having a good squareness with increasing the cooling oxygen partial pressure. We observed the decrease of remanent polarization, retained polarization and coercive field with decreasing the oxygen partial pressure. Dielectric constant decreased gradually and internal bias field increased in the measurement of dielectric constant-voltage property with decreasing cooling oxygen partial pressure. We observed the increase of nonswitched polarization in the measurement of field accelerated retention and the decrease of nonswitched polarization with increasing the bias time.

  • PDF

Flow and Heat Transfer Characteristics in a Slot Film Cooling with Various Flow Inlet Conditions (냉각유로방식 변화에 따른 슬롯 막냉각에서의 유동 및 열전달 특성)

  • Ham, Jin-Ki;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.870-879
    • /
    • 2000
  • An experimental investigation is conducted to improve a slot film cooling system which can be used for the cooling of gas turbine combustor liner. The tangential slots are constructed of discrete holes with different injection types which are the parallel, vertical, and combined to the slot lip. The investigation is focused on the coolant supply systems of normal-, parallel-, and counter-flow paths to the mainstream direction. A naphthalene sublimation technique has been employed to measure the local heat/mass transfer coefficients in a slot with various injection types and coolant feeding directions. The velocity distributions at the exit of slot lip for the parallel and vertical injection types are fairly uniform with mild periodical patterns with respect to the hole positions. However, the combined injection type increases the nonuniformity of flow distribution with the period equaling twice that of hole-to-hole pitch due to splitting and merging of the ejected flows. The secondary flow at the lip exit has uniform velocity distributions for the parallel and vertical injection types, which are similar to the results of a two-dimensional slot injection. In the results of local heat/mass transfer coefficient, the best cooling performance inside the slot is obtained with the vertical injection type among the three different injection types due to the effect of jet impingement. The lateral distributions of Sh with the parallel- and counter-flow paths are more uniform than the normal flow path. The averaged Sh with the injection holes are $2{\sim}5$ times higher than that of a smooth two-dimensional slot path.

Analysis of Thermal Stresses in Polymeric Thin Film (고분자 박막에서의 열응력 해석)

  • 이상순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.389-394
    • /
    • 2003
  • In this study, the stress singularity factors generated during cooling down from high curing temperature to room temperature have been analyzed for the viscoelastic thin film. The time domain boundary element method has been employed to investigate the behavior of stresses for the whole interface. Within the context of a linear viscoelastic theory, a stress singularity exists at the point where the interface between the elastic substrate and the viscoelastic thin film intersects the free surface.

  • PDF

Estimation of Thermal Stresses Induced in Polymeric Thin Film Using Boundary Element Methods

  • Lee, Sang-Soon
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.27-33
    • /
    • 2002
  • The residual thermal stresses at the interface corner between the elastic substrate and the viscoelastic thin film due to cooling from cure temperature down to room temperature have been studied. The polymeric thin film was assumed to be thermorheologically simple. The boundary element method was employed to investigate the nature of stresses on the whole interface. Numerical results show that very large stress gradients are present at the interface comer and such stress singularity might lead to edge cracks or delamination.

  • PDF

Improvement of Cooling Effects of Pylon Injector for Scramjet Combustor (스크램제트 연소기용 파일런 분사기 냉각성능 개선 연구)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.10-18
    • /
    • 2011
  • A new film cooling method to protect the pylon injector from aerodynamic heating for a scramjet combustor is proposed and verified with numerical methods. The conditions for the Mach 8 flight at an altitude of 35km are considered. Air is considered as a coolant. Three-dimensional Navier-Stokes equations with $k-{\omega}$ SST turbulence model are used. A downward injection of coolant from the top of the pylon gives higher cooling effects with less mass flow rate of coolant than the upward coolant injection from bottom of the pylon. Also, the downward injection shows little flow separation due to the favorable pressure gradient and does not disturb the flowfields near pylon injector, which results in reduction of pressure losses.