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Albstract

The residual thermal stresses at the interface corner between the elastic substrate
and the viscoelastic thin film due to cooling from cure temperature down to room
temperature have been studied. The polymeric thin film was assumed to be
thermorheologically simple. The boundary element method was employed to investigate
the nature of stresses on the whole interface. Numerical results show that very large
stress gradients are present at the interface corner and such stress singularity might lead
to edge cracks or delamination.

1. Introduction

Residual stresses induced into thin film deposited on an elastic substrate can have a
major effect on the interface stresses present in such materials. Such stresses are due to
the differences between the thermal expansion coefficients of the components. Residual
thermal stresses may cause distortion of finished components and premature failure
upon external loading.

Residual stresses induced in the viscoelastic thin layer have received much
attention. Weitsman(1979) analyzed the mechanical behavior of an epoxy adhesive layer
as the adhesive absorbs moisture from the ambient environment. Delale and
Erdogan(1981) presented the viscoelastic behavior of an adhesively bonded lap joint.
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Lee(1998) performed the boundary element analysis of the stress singularity for the
viscoelastic adhesive layer under transverse tensile strain.

In this study, the residual thermal stresses developed at the interface corner
between the elastic substrate and the viscoelastic thin film of a two-dimensional
laminate model due to cooling from the cure temperature down to room temperature are
investigated. A thermorheologically simple material behavior for the viscoelastic thin
film is assumed. The detailed analysis is performed by using the boundary element
method.

2. Order of Stress Singularity

The region near the interface corner between perfectly bonded elastic and
viscoelastic quarter planes is shown in Fig.l. In the following, a condition of plane

strain is considered. A solution of

vAo@r,0:£€)=0 (1)

is to be found such that the normal stress, &,, and shear stress, r,,, vanish along
0 =+(z/2), further that the displacements and stresses are continuous across the
common interface line #=0. Here » and & are defined in Fig.1. The solution of

this problem is facilitated by the Laplace transform, defined as
©*(r,0; p) = [ O(r,6:8) Pl @
0

where @ *denotes the Laplace transform of @ and pis the transform parameter.

Then eq.(1) can be rewritten using eq.(2) as follows:

Vo*(r,0:p)=0 3)
Nontrivial solutions that satisfy the plane strain equations of linear elasticity and the
boundary conditions can be shown to exist only when s satisfies the following
characteristic equation (Bogy 1968):

[(ml(P)—mz(P))cosz(%J—m(p)(s+1)2} +mi(p)cos’ (%) sin{%)

~m(p)(s+1f =0 (4)

where
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Eq.(4) has a form identical with that of two bonded elastic quarter planes if py*,
and p u*, are associated with the elastic constants y; and u,. The calculation of

roots of eq.(4) actually can be reduced to two transformed material parameters g* (p)

and S* (p) which are associated with Dundurs’ parameters 5, f,(Dundurs 1969).

In plane strain, pa* (p)and p B* (p)are defined as follows:

pur A=vy)—p,(1-pv¥)
pu* (=vy)+p, (1~ py*)
pu*, A-2vy)- Hi (I-2py*)
2pup* A=v)+2p,(0-pv*)

pa*(p)=

pB*(p)= (6)

For the problem of two dissimilar bonded elastic quarter planes, it can be easily verified

that transformed material parameters g* (p) and £* (p) are inverted into Dundurs’

parameters ¢, f,. The time dependent behavior of the problems is recovered by

inverting eq.(4) into the real time space.

3. Boundary Element Analysis of Interface Stresses

Fig.2 shows the two-dimensional plane strain model for analysis of the micro
stresses at the interface comer due to cooling from cure temperature down to room
temperature. The analysis model of Fig.2(b) is divided into two sub domains, one
viscoelastic zone and one elastic zone; in each zone the material is isotropic and
homogeneous. This problem can be treated using a viscoelastic boundary integral
formulation for viscoelastic zone and a separate elastic boundary integral formulation

for the elastic zone. These boundary integral equations formulated for every
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homogeneous zone plus the displacement continuity and traction equilibrium conditions
over the common interface produce a system that can be solved once the external
boundary conditions are considered.

The uniform temperature changes T(f)H(¢t) in each zone of analysis model are

equivalent to increasing the tractions by »*7T(f)n, and y"O(t)n, where

Y =3Ka. (M
Y =3K"a,
and H(r)is the Heaviside unit step function. Here, ‘e’ and ‘v’ represent the elastic and
viscoelastic zones, respectively, Kis the bulk modulus, j, are the components of the
unit outward normal to the boundary surface, and «is the coefficient of thermal
expansion. .
The “pseudo-temperature” ©(f) and ¢, are defined by

1 T®
0() = - falT")dT" (®)
Co=Um (To)

where ¢, is the coefficient of the thermal expansion of the viscoelastic film.
Assuming that no body forces exist, the boundary integral equations for the model

under uniform temperature change can be written as follows:

For the elastic zone

e (Y)uj(y,6) + Ifu?(Y',f)TZ- (¥, y)ds°(y'") ©)

= 16060 DU (YN s 6 + [ T(E) U5 (v,y)d 5°(")

For the viscoelastic zone

cy (y_)uj- v.%) (10)

“] uﬁ-(y',é)Tz-(y,y';0+)+iu}(y',f—é’)%%g&dé"]ds”(y')

i V fr? v H v ' aUr(y9 ';5') ' V(!

=[50y UOY 0D+ 5006 -¢ )—’a-é,—dé‘ S (y")
[ v ' ¢ v ' aUlv ’ '; ') ' [}

+ 1|7 0@ Uiy 0n + [ e - )n,-—’—(g—;—‘f—df]ds%y )

where an_d t; denote the displacement vector and the traction vector in reduced
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time space, respectively, and S'is the boundary of the given domain. ¢, is dependent
only upon the local geometry of the boundary. For y on a smooth surface, the free
term ¢, is simply a diagonal matrix 0.55;. U, and T, represent the fundamental

¢ 1
= y) 11
4 gﬁ_jdaT[T(l) (11

The shift function g;is a basic property of the material and must, in general, be

solutions and

determined experimentally.

Closed form integrations of egs. (9) and (10) are not, in general, possible and
therefore numerical quadrature must be used. Approximations are required in both time
and space. Egs.(9) and (10) can be solved in a step by step fashion in time by using the
modified Simpson’s rule for time integrals and employing the standard boundary
element method for the surface integrals(Lee and Westmann 1995).

The properties for the viscoleastic material are from experimental data(Weitsman
1979):

3
E(&)= Tﬁ%;_—“slsogw MPa (& :min)
K'(&)=K,=3.556x10° MPa (12)

— oxn] 0480
ar P T

—21.82:‘

o

ay=0.5x10" ¢!

Fig.3 shows the variation of the stress singularity factor. It is shown that the stress
singularity factor is relaxed with time.

4. Conclusions

The singular stresses at the interface corner between the elastic substrate and the
viscoelastic thin film of a two-dimensional laminate model subjected to a uniform
temperature change have been investigated by using the viscoelastic boundary element
method. The very large stress gradients are present at the interface corner and such
stress singularity dominates a very small region relative to film thickness. Since the
exceedingly large stresses at the interface comer cannot be borne by the viscoelastic

thin film, edge cracks or delamination can occur in the vicinity of free surface.
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Fig.1  Region near interface corner between the elastic substrate

and the viscoelastic thin film
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Fig.2 Boundary element model for determination of interface stresses.
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Fig.3. Variation of the stress singularity factors
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