• Title/Summary/Keyword: Fills

Search Result 271, Processing Time 0.021 seconds

Characteristics of heat transfer and pressure drops of the fills for solar tower volumetric air receivers (솔라 타워용 공기식 흡수기를 위한 충진재의 열전달 및 압력 강하 특성)

  • Cho, J.H.;Lee, J.H.;Kim, Y.;Jeon, Y.H.;Seo, T.B.;Kang, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3389-3394
    • /
    • 2007
  • Characteristics of heat transfer and pressure drops of fills for solar tower volumetric air receivers are experimentally investigated with the material and the thickness. The volumetric air receiver considered in this paper consists of a ceramic tube and fills are inserted in the ceramic tube. Air is used as the working fluid. Two materials, which are a honeycomb(diameter: 100mm, thickness: 30mm) and laminated mesh(diameter: 100mm, thickness: 1mm), are considered as the fills. In order to investigate the characteristics of heat transfer of fills, this volumetric air receiver is heated by an electric heater and air temperatures in ceramic tube are measured. Also, the radiative shields are installed to measure the only air temperature. In addition, the pressure losses are measured with the thickness of fills while the air goes through the fills inserted in an acrylic tube. The flow becomes turbulent and fully developed in front of the fills. The results show that the heat transfer and pressure drop characteristics of the laminated mesh are superior to those of the honeycomb.

  • PDF

A Study on the Prediction of Increased Strength due to Desiccation Shrinkage and Determination of Deposit Time for Equipments in Dredged Fills (준설매립토의 건조수축에 따른 강도증가 예측과 장비투입시기 결정에 관한 연구)

  • 김석열;김승욱;김홍택;강인규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.591-598
    • /
    • 2000
  • In the present study, the variation of settlement, pore water pressure and undrained shear strength through model tests were measured. Also, the variation of water content, unit weight and shear strength by the vane shear tests were observed. In this study, appropriate deposit time of construction equipments used in treatment of hydraulic fills is determined from the prediction curve of increased shear strength in dredged fills.

  • PDF

Estimation of Property for Flowable Fills Using Disposal Materials (폐기물을 활용한 유동성 복토재의 특성 평가)

  • Lee, Jong-Kyu;Lee, Bong-Jik;Shin, Bang-Woong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.2
    • /
    • pp.31-38
    • /
    • 2005
  • Flowable fills are self-leveling, liquid-like materials, and self-compacting to 95-100% of the maximum unit weight. Benefits of flowable fills include limited required labor, accelerated construction, ready placement at inaccessible locations, and the ability to be manually re-excavated. Applications for flowable fills include utility trenches, building excavations, underground storage tanks, abandoned sewers and utility lines, and filling underground mine shafts The objective of this study is to estimate engineering property of flowable fills made of soil mixed with recycled stylofoam and stabilizer for using geotechnical field. For this study, the uniaxial compression test, flowable test, and model tests were performed. Based on the results of the tests, the following conclusions are : fills made of soil mixed with recycled stylofoam and stabilizer can be used as flowable fills, minimum stabilizer quantity for using flowable fills ranges from 1.0($kN/m^3$) to 1.2 ($kN/m^3$).

  • PDF

A Methodology for Compaction Control of Crushed-Rock-Soil-Fills (암버럭-토사 성토 노반의 다짐 관리 방안)

  • Park, Chul-Soo;Hong, Young-Pyo;Joh, Sung-Ho;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.607-616
    • /
    • 2006
  • More strict construction control of railway roadbeds is demanded in high speed railway system because of heavier repeated dynamic loading than conventional railways. The aim of this study is to propose a compaction control methodology of crushed-rock-soil-fills including as large particles as $200\sim300mm$ in diameter, which are easily encountered in high speed railway roadbed. Field tensity evaluation and in turn compaction control of such crushed-rock-soil-fills are almost impossible by conventional methods such as in-situ density measurements or plate loading tests. The proposed method consists of shear wave measurements of compaction specimens in laboratory and in-situ measurements of fills. In other words, compaction control can be carried out by comparing laboratory and field shear wave velocities using as a compaction control parameter. The proposed method was implemented at a soil site in the beginning and will be expanded to crushed-rock-soil-fills in future. One interesting result is that similar relationship of shear wave velocity and water content was obtained as that of density and water content with the maximum value at the optimum moisture content.

  • PDF

Mechanics of the slaking of shales

  • Vallejo, Luis E.
    • Geomechanics and Engineering
    • /
    • v.3 no.3
    • /
    • pp.219-231
    • /
    • 2011
  • Waste fills resulting from coal mining should consist of large, free-draining sedimentary rocks fragments. The successful performance of these fills is related to the strength and durability of the individual rock fragments. When fills are made of shale fragments, some fragments will be durable and some will degrade into soil particles resulting from slaking and inter-particle point loads. The degraded material fills the voids between the intact fragments, and results in settlement. A laboratory program with point load and slake durability tests as well as thin section examination of sixty-eight shale samples from the Appalachian region of the United States revealed that pore micro-geometry has a major influence on degradation. Under saturated and unsaturated conditions, the shales absorb water, and the air in their pores is compressed, breaking the shales. This breakage was more pronounced in shales with smooth pore boundaries and having a diameter equal to or smaller than 0.060 mm. If the pore walls were rough, the air-pressure breaking mechanism was not effective. However, pore roughness (measured by the fractal dimension) had a detrimental effect on point load resistance. This study indicated that the optimum shales to resist both slaking as well as point loads are those that have pores with a fractal dimension equal to 1.425 and a diameter equal to or smaller than 0.06 mm.

Channel-fill Deposits of Gravel-bed Stream, Southeastern Eumsung Basin (Cretaceous), Korea

  • Ryang, Woo-Hun
    • Journal of the Korean earth science society
    • /
    • v.27 no.7
    • /
    • pp.757-767
    • /
    • 2006
  • Alluvial-plain deposits in the southeastern part of the Eumsung Basin (Cretaceous) are characterized by coarse-grained channel fills encased in purple siltstone beds. It represents distinct channel geometry, infill organization, and variations in facies distribution. The directions of paleocurrent, sedimentary facies changes, and channel-fill geometry can be used to reconstruct a channel network in the alluvial system developed along the southeastern margin of the basin. The channel-fill facies represent downstream changes: 1) down-sizing and well-sorting in clast and martix of channel fills and 2) internal organization of scour fill or gravel lag and overlying cross-stratified, planar-stratified beds. These findings suggest multiple stages of channel-filling processes according to flooding and subsequent stream flows. In the small-scale pull-apart Eumsung Basin (${\sim}7{\times}33km^2$ in area), vertical-stacked alluvial architecture of the coarse-grained channel fills encased in purple siltstone is expected to result from episodic channel shifting under a rapidly subsiding setting.

A Study on the Shallow Improvement Method for Dredged Clay Fills by the Model Tests (모형시험에 의한 준설점토지반의 표층안정기법 연구)

  • 김석열;노종구;이영철;권수영;김승욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.569-576
    • /
    • 2002
  • Recently, the hydraulic fill method is commonly used in many reclamation projects due to lack of fill materials. The method of hydraulic fill in reclamation is executed by transporting the mixture of water-soil particles into a reclaimed land through dredging pipes, then the dredged soil particles settle down in the water or flow over an out flow weir with the water. In the present study, to compare the soil and sand-mat mixed method with sand-air jet method for shallow improvement of hydraulic fills at southern seashore, the model tests were performed. Through the model test results, the behavior of surface as disturbance of desiccation crust is analyzed.

  • PDF

Laboratory Model Tests on the Load Transfer in Geosynthetic-Reinforced and Pile-Supported Embankment System (토목섬유보강 성토지지말뚝시스템에서의 하중전이 효과에 관한 모형실험)

  • Hong, Won-Pyo;Lee, Jae-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.9-18
    • /
    • 2010
  • A series of model tests were performed to investigate the load transfer by soil arching in geosynthetic-reinforced and pile-supported(GRPS) embankment systems. In the model tests, model piles with isolated cap were inserted in the model container and geosynthetics was laid on the pile caps below sand fills. The settlement of soft ground was simulated by rubber form. The loads acting on pile caps and the tensile strain of geosynthetics were monitored by data logging system. At the given interval ratio of pile caps, the efficiency in GRPS embankment systems increased with increasing the height of embankment fills, then gradually converged at constant value. Also, at the given height of embankment fills, the efficiency decreased with increasing the pile spacing. The embankment loads transferred on pile cap by soil arching increased when the geosynthetics installed with piles. This illustrated that reinforcing with the geosynthetics have a good effect to restraint the movement of surrounding soft grounds. The load transfer in GRPS embankment systems was affected by the interval ratio, height of fills, properties of grounds and tensile stiffness and so on.

  • PDF

A Review on the Stratigraphy, Depositional Age, and Composition of the Chungnam Basin Fills (충남분지 충전물의 층서, 퇴적시기, 조성에 관한 고찰)

  • Lee, Hyojong;Park, Seung-Ik;Choi, Taejin
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.357-366
    • /
    • 2019
  • Deposition of the Daedong Supergroup has been considered to be related with the Triassic Songrim and Jurassic Daebo orogenies. The Chungnam Basin fills is an important sedimentary succession to understand the geological evolution of the Early to Middle Mesozoic Korean Peninsula. Previous paleontological and paleomagnetic studies have suggested the Late Triassic to Early Jurassic sedimentation of the Chungnam Basin fills. However, the orogenic model of the basin development has remained controversial because recently reported zircon U-Pb isotopic ages are not harmonious with the previous studies. This paper aims to review the stratigraphy, depositional age, and composition of the Chungnam Basin fills, together with test of the basin development models.

Bearing Capacity Characteristics of the Light Weight Method Used Recycled EPS Beads (폐 EPS 입자를 활용한 경량성토공법의 지지력 평가)

  • Lee, Jongkyu;Lee, Bongjik;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.5
    • /
    • pp.21-29
    • /
    • 2006
  • Light weight filling method prevents settlement of ground by decreasing the weight of fills. This method is increasingly used for it's convenience and workability. Styrofoam is increasingly used as a lightweight filling material in soft ground. The beneficial effects of the use of EPS derive from minimizing the stress increment, increasing the bearing capacity and reducing the settlement. For this study, model test and FEM analysis of bearing capacity is carried out composing two-layered ground with clay in the lower layer and lightweight filling material in upper layer. Based on the results obtained here in this study, it is concluded that the use of recycled EPS beads is acceptable lightweight fill. Light weight fills used for disposal is superior to typical embankment fills in bearing capacity.

  • PDF