• Title/Summary/Keyword: Filling amount

Search Result 270, Processing Time 0.026 seconds

DENTINAL MICROLEAKAGE STUDY ON THE LIGHT CURABLE RESTORATIVE GLASS IONOMER CEMENT (광중합형 충전용 글라스 아이오노머 시멘트의 상아질 변연누출에 관한 정량분석)

  • Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.832-838
    • /
    • 1995
  • The purpose of this study was to evaluate the amount of marginal microleakage of 2 light curable GI cements(Fuji II LC & VariGlass), which contain some resin components. 4 volunteers kept on acrylic resin plates, which contained dentin disks with cavities filled with test materials for 2 weeks. The time when polishing was done(5 minutes and 24 hours after filling) and the use of protective agents were varied, so 8 groups with each 6 specimens were tested. After having specimens(disks with cavities filled with materials) penetrated with 1% Methylene Blue solution, specimens were stored in 40% nitric acid solution for 4 days to extract adsorbed dye material. Supernatants of centrifuged samples were diluted 5 times and Spectrophotometer was used to determine the degree of absorption. Dye concentration was calculated through the pre-obtained Linear Regression Curve. The results were as follows. 1. The best result was seen in groups (PF24, PV24) which were protected and polished 24 hours later and the opposite phenomenon was seen in groups(NF24, NV24) which were held without protection and polished 24 hours later. Groups polished S minutes later showed moderate leakage pattern. 2. Groups polished 5 minutes later showed similar leakage amount irrespective of using of protective agent. But statistically insignificant lower values were seen in VariGlass than in Fuji II LC groups, So It was considered that VariGlass may be more resistant to early moisture attack than Fuji II LC. 3. In groups polished 24 hours later, there was no significant difference between materials but was definitely significant difference according to the use of protective agent. If the cement in which polishing will be done 24 hours later, Protective agent should be used to cover the surface.

  • PDF

Experimental Study on the Setting Time and Compressive Strength of Nano-Micro Pozzolanic Binders as Cement Composites (포졸란 혼화재의 입자 크기 및 비표면적에 따른 응결시간 발현 및 압축강도 특성 평가)

  • Kim, Won-Woo;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.269-275
    • /
    • 2022
  • In this study, the setting time and compressive strength of cement paste composites applied with nano-micro pozzolanic binders were experimental analyzed. The pozzolanic binder was reduced initial and final setting time and the compressive strength was increased. Micro silica was effective in decrease the initial setting and final setting time and impressing the compressive strength. When two or more cement binders were used, the using of silica fume and a small amount of nano silica at reduced the setting time to 62-64 % to OPC cement and the compressive strength was increased to 117 %. A small amount of mixing the nano silica was effect to pore filling and pozzolanic activation. However, the addition of a chemical admixture should be considered when mixing table design because pozzolanic binders high specific surface area causes a decrease in cement composites flow.

A Study on the Durability of PCM Mixed Concrete for the Reduction of Cold and Hot Damage (혹한·혹서 피해 저감용 PCM 혼입콘크리트의 내구성에 관한 연구)

  • Hoyeol Kim;Il Young Jang
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.390-397
    • /
    • 2024
  • Purpose: In this study, PCM was used to give thermal performance to concrete and analyze its effect on durability to prevent disasters that may occur in concrete when exposed to hot and cold environments. Method: After preparing concrete specimens containing 10, 30, and 50% of the two types of PCMs compared to the cement volume, the pore volume, freeze melting resistance, and scaling resistance were evaluated. Result: Regardless of the type, when PCM powder was mixed with concrete, the amount of pores decreased, and when 10% and 30% were mixed, the freeze-melting resistance was also improved. It was also confirmed that the higher the mixing amount, the better the scaling resistance. Conclusion: When mixing powdered PCM into concrete, it is believed that durability can be improved to a certain level by the filling effect, and additional various studies should be supported for actual field application.

Evaluation of Durability of Cement Matrix Replaced with Limestone Powder (석회석 미분말을 혼합한 시멘트 경화체의 내구성능 평가)

  • Woo-Sik Jang;Kwang-Pil Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.102-109
    • /
    • 2024
  • In order to use limestone powder as a material for concrete, the mechanical and durability characteristics of cement matrices manufactured by varying the substitution rate were evaluated. In general, limestone powder did not contribute to the cement hydration reaction, so as a result of the compressive strength test of cement mortar using it, the compressive strength decreased as the substitution rate increased. However, as a result of evaluating the durability performance of cement mortar using limestone powder, such as chloride ion penetration resistance, carbonation resistance, and chemical attack resistance, small particles of limestone powder showed superior results compared to the unsubstituted control mortar due to the micro-filler effect of filling the fine pores inside the cement matrix. Therefore, limestone powder is expected to be used as an effective method for improving the durability of concrete. In this study, the durability was evaluated by changing the mixing amount of limestone powder to 0 %, 5 %, 10 %, and 15 %, but it is judged that it is necessary to study in more detail the effect on the durability by changing the end and mixing amount of limestone powder to various levels in the future.

The Constituent Analysis of Leachate in Landfill Site (매립장에서 발생되는 침출수의 성분분석)

  • 한상우;김귀자;안생민;권영수;박재주
    • Environmental Analysis Health and Toxicology
    • /
    • v.5 no.1_2
    • /
    • pp.51-55
    • /
    • 1990
  • The ultimate Wastes generated after being treated safely and properly were land-filled in Wha Sung Treatment Plant, that of specific hazardous Wastes. There are three kinds of wastes being landfilled, which are sludges, ashes, and solidificated wastes with cement. This research scrutinizes the variations of leachate which originated from landfilled wastes amount to 30,000 ton with analizing the constituent, pH and concentration of wastes once per month since september, 1987. Now, we have some conclusions as followings; 1. The longer retention time of wastes in landfill site and the more quantity of filling-up, the closer pH of leachate to alkalinity. 2. As the quantity of copper and its compounds is over 90 percent of constituents loundfilled wastes, so the copper of leachate goes above treatment criteria. 3. There lis relationship between pH of leachate and eruption of copper and its compounds. The higher pH of leachate, the more secured copper and its compounds. So, we learn that solidificated wastes with cement is more secured than sludges and ashes. 4. The pH and concentration of copper in leachate is low in July and August, this is passing phenomenon which diluted by rainfall in rainy days. 5. The quantities of cadmium and lead of leachate was not over the treatment criteria.

  • PDF

Fabrication of$Al_2O_3/Fe$ composite by reaction sintering (반응소결법에 의한 $Al_2O_3/Fe$ 복합재료 제조)

  • 김송희;윤여범
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.185-190
    • /
    • 1999
  • An $Al_2O_3/Fe$ composite was synthesized through the double stage processes by a reaction sintering which requires simple process and equipments but provides near-net-shape, a reduction/oxidation process for 5 hrs at $650^{\circ}C$ was followed by sintering at $1200^{\circ}C$ to form an $Al_2O_3/Fe$ composite. The composite processed through the double stage sintering are mainly consists of $\alpha$-Fe and ${\alpha}Al_2O_3$ with minor amount of $FeAl_2O_4$, a spinnel structure which is known to prevent Fe from filling up the pores and good contact with $Al_2O_3/Fe$ particles.

  • PDF

Job Analyses of Health Care Managers in Group Health Care System (보건관리대행사업에서 보건관리자의 직무분석)

  • Kim, Kyoo-Sang;Park, Chong-Yon;Roh, Jae-Hoon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.27 no.4 s.48
    • /
    • pp.777-791
    • /
    • 1994
  • For developing the Group Health Care System, health managers' job structure were analysed in the aspects of content, amount, and process. As a trial research, data were collected by a standardized job analysis table to 6 doctors, 40 nurses, and 11 industrial hygienists of Group Health Care System. Health care managers were performing complex and intellectual jobs such as healh education for workers, managing health care, conference as well as more simple jobs like as filling diary. Especially, job was consisted of general job and health care management job in the proportion of 1:2.18. The major general job were data management related with the health statistics, and major health care management jobs were managing health care, health counselling, environmental management of working sites. Each specific jobs were required differentiated intellectual capacity, creativity, autonomy, psychic stress, and physical work; most respondents perceived that health care management jobs should require more inputs than general jobs. Additionally job satisfaction and perceived need on specific Job items were anzlysed. Results of this research, suggested through the field experiences in working sites, should be considered for improving the Group Health Care System.

  • PDF

THE EFFECT OF ND : YAG LASER ON DENTINAL TUBULE SEAL AFTER ROOT END RESECTION (치근단절제시 노출된 상아세관의 밀폐효과에 대한 Nd : YAG 레이저의 효과)

  • Shin, Kwang-Chul;Hong, Chan-Ui
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.311-320
    • /
    • 1996
  • If root and resection is done during surgical endodontic treatment, newly exposed dentinal tubules form pathways between the canal and the peripheral tissue. Nd : YAG laser was used to block this phenomenon, and its effect was studied with dye penetration and SEM techniques. 40 intact single rooted teeth were divided into 4 groups(10 each) : control group and test groups, in which retrograde cavity surface, cutting surface, retrograde cavity surface & cutting surface were treated with laser(1 watt 15pps) and finally retrograde filling with IRM was conducted. After that, they were stained with 2 % methylene blue, sectioned and evaluated by the maximum infiltration depth. And to observe surface change, they were prepared for SEM. The results were as follows ; 1. All experimental groups showed microleakage with variation in amount. 2. The 2nd group which treated both the retrograde cavity and cutting surface showed significantly less microleakage than the other groups(p<0.05). There was no significant difference between groups treated on one side only. 3. As a result of SEM observation of dentin surface, obstruction of dentinal tubules with marble shaped granules, which were different from normal dentin could be seen. Cracks could be seen also. 4. In summary of this experiment, it is thought that effort to obstruct the exposed dentinal tubules as well as retrograde cavity after root end resection is needed.

  • PDF

Effects of Particle Size and Binder Phase Addition on Formability of Li-Si Alloy Powder for Thermal Battery Anode (열전지 음극재용 Li-Si 원료의 성형성에 미치는 입자크기와 바인더첨가 효과)

  • Ryu, Sung-Soo;Kim, Hui-Sik;Kim, Seongwon;Kim, Hyung-Tae;Cheong, Hae-Won;Lee, Sung-Min
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.331-337
    • /
    • 2014
  • The effects of particle size of Li-Si alloy and LiCl-KCl addition as a binder phase for raw material of anode were investigated on the formability of the thermal battery anode. The formability was evaluated with respect to filling density, tap density, compaction density, spring-back and compressive strength. With increasing particle size of Li-Si alloy powder, densities increased while spring-back and compressive strength decreased. Since the small spring-back is beneficial to avoiding breakage of pressed compacts, larger particles might be more suitable for anode forming. The increasing amount of LiCl-KCl binder phase contributed to reducing spring-back, improving the formability of anode powder too. The control of particle size also seems to be helpful to get double pressed pellets, which consisted of two layer of anode and electrolyte.

Fundamental Study of Mix Proportions of High-Flow Cement-Based Mortar for Gravel-Fill Used in Restoration of Collapsed Roads (도로유실 복구를 위한 골재 충전 고흐름도 모르타르의 기초 배합 연구)

  • Cho, Hyun Myung;Jeon, Sang Pyo;Kim, Seung Won;Yun, Kyong Ku;Park, Cheol Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.63-70
    • /
    • 2015
  • PURPOSES: As a part of our research into repair techniques for roads that have collapsed as a result of a natural disaster, this study set out to find the optimum mix proportion for gravels to be used to restore a damaged area. METHODS: This study considered flow and strength-development characteristics. The experimental variables were the W/C ratio, the usage of the admixture, the types of cement, and the quantity of fine aggregate over three different experimental stages. The compressive strength was measured at 12 hours, one day, three days, and seven days. RESULTS : The flow varied with the amount of fine aggregate and the use of a high-range water-reducing (HRWR) admixture. The compressive strength also varied with respect to the type of cement and the W/C ratios. The strength satisfied the expected requirement of 21 MPa after one day, provided the mix proportion was appropriate. CONCLUSIONS: A gravel-filling high-flow cement-based mortar exhibited strength and consistency with a W/C ratio in the range of 0.40 to 0.45, assuming the use of HRWR at 0.5 to 0.7% and a fine aggregate/cement ratio of 1.0 to 1.5.