• Title/Summary/Keyword: Fillet joint

Search Result 137, Processing Time 0.026 seconds

A Study on the Characteristics of Fatigue Failure for Fillet Welded Joint (필릿 용접이음부의 피로파괴 특성에 관한 연구)

  • Kang, S.W.;Ha, W.I.;Shin, J.S.;Jang, T.W.;Jae, J.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.133-141
    • /
    • 1996
  • The mode of fatigue failure is depended on the characteristics of the fatigue crack initiated and propagated from the weld toe and the weld root in the load-carrying fillet welded joints. The characteristics of fatigue crack are deeply affected by the geometry of fillet and the stress range. The purpose of this study is to investigate critical weld size and stress range in order to occur toe failure under pulsating tension loading in the load-carrying fillet welded cruciform joints.

  • PDF

End-Shape Effect for Stress Concentration Reduction of Composite Single-Lap Bonded Joint (끝단형상에 따른 복합소재 단일겹치기 체결부의 응력집중 저감에 관한 연구)

  • Kim, Jung-Seok;Hwang, Jae-Yeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.333-340
    • /
    • 2011
  • We evaluated the stress-reduction effect for different shapes of a composite adherend with or without a spew fillet. Six different single-lap joint specimens were modeled and assessed using nonlinear finite element analysis. Moreover, we investigated the effect of the stiffness ratio of the adherend and adhesive. The single-lap joint with normal tapering had the highest stress values, and the single-lap joint with reverse tapering and a spew fillet had the lowest stress values. The composite adherends with higher stiffness had lower stress values, and the adhesives with lower stiffness had lower stress values.

Analytical Solution for Transient Temperature Distribution in Fillet Arc Welding (필릿 용접 공정에서 온도 분포 예측을 위한 해석적 모델)

  • 정선국;조형석
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.68-81
    • /
    • 1995
  • This paper presents an analytical solution to predict the transient temperature distribution in fillet arc welding. The analytical solution is obtained by solving a transient three -dimensional heat conduction equation with convection boundary conditions on the surfaces of an infinite plate with finite thicknesses, and mapping an infinite plate onto the fillet weld geometry with energy equation. The electric arc heat input on fillet weld and on infinite plate is assumed to have a traveling bivariate Gaussian distribution. To check the validity of the solution, GTA and FCA welding experiments were performed under various welding conditions. The actual isotherms of the weldment cross - sections at various distances from the arc start point are compared with those of simulation result. As the result shows a satisfactory accuracy, this analytical solution can be used to predict the transient temperature distribution in the fiIIet weld of finite thickness under a moving bivariate Gaussian distributed heat source. The simplicity and short calculation time of the analytical solution provides rationales to use the analytical solution for modeling the welding control systems or for an optimization tool of welding process parameters.

  • PDF

Study on Deformation and Strength of Fillet Welds (Fillet Welding Joint의 파괴기구(破壞機構)와 강도(强度)에 관한 연구(硏究))

  • Dong-Suk,Um
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.7 no.2
    • /
    • pp.27-40
    • /
    • 1970
  • The distribution of stress and strain in elastic stages is investigated by the experiments of two dimensional photoelastic coating and Moire fringe method. Center block type and cover plate type of fillet welds are used as specimens in the test. The results are as follows. 1) Center block type gets less uniform stress distribution than cover plate type. And its stress concentration factor, especially at root, is larger than that at toe. 2) When main plate and cover plate closely contact and it cause friction, stress concentration decreases more than that in case of slit. That is because stress can be transmitted on the contact surface. 3) When slit is made, the outside of fillet gets more stress than the inside of it. 4) While the plastic strain distribution of center block type reaches the maximum at root and differs very slightly from that under lower loading, the plastic strain distribution of cover plate type is inclined to get the maximum at the outside of fillet rather than at root. 5) When the plastic strain value of cover plate type is compared with that of center block type at toe and root, the relations between the former and the latter shows root<toe and root>toe. 6) Because stress distribution becomes changed according to loading, fracture angle cannot be estimated by the peaks of elastic stress distribution. 7) The strain distribution just before fracture can be found by Moire fringe method.

  • PDF

A Study on the Prediction of Bead Geometry for Lab Joint Fillet Welds Using Sensitivity Analysis (민감도 분석을 이용한 겹치기 필릿용접부 비드형상 예측에 관한 연구)

  • Jeong, Jae-Won;Kim, Ill-Soo;Kim, Hak-Hyoung;Kim, In-Ju;Bang, Hong-In
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.49-55
    • /
    • 2008
  • Arc welding process is one of the most important technologies to join metal plates. Robotic welding offers the reduced manufacturing cost sought, but its widespread use demands a means of sensing and correcting for inaccuracies in the part, the fixturing and the robot. A number of problems that need to be addressed in robotic arc welding processes include sensing, joint tracking, and lack of adequate models for process parameter prediction and quality control. Problems with parameter settings and quality control occur frequently in the GMA(Gas Metal Arc) welding process due to the large number of interactive process parameters that must be set and accurately controlled. The objectives of this paper are to realize the mapping characteristics of bead width using a sensitivity analysis and develop the neural network and multiple regression method, and finally select the most accurate model in order to control the weld quality(bead width) for fillet welding. The experimental results show that the proposed neural network estimator can predict bead width with reasonable accuracy, and guarantee the uniform weld quality.

Neuro-Fuzzy System for Predicting Optimal Weld Parameters of Horizontal Fillet welds

  • Moon, H.S.;Na, S.J.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.2
    • /
    • pp.36-44
    • /
    • 2001
  • To get the appropriate welding process variables, mathematical modeling in conjunction with many experiments is necessary to predict the magnitude of weld bead shape. Even though the experimental results are reliable, it has a difficulty in accurately predicting welding process variables for the desired weld bead shape because of nonlinear and complex characteristics of welding processes. The welding condition determined for the desired weld bead shape may cause the weld defect if the welding current/voltage/speed combination is improperly selected. In this study, the $2^{n-1}$ fractional factorial design method and correlation parameter were used to investigate the effect of the welding process variables on the fillet joint shape, and the multiple non-linear regression analysis was used for modeling the gas metal arc welding(GMAW)parameters of the fillet joint. Finally, a fuzzy rule-based method and a neural network method were proposed so that the complexity and non-linearity of arc welding phenomena could be effectively overcome. The performance of the proposed neuro-fuzzy system was evaluated through various experiments. The experimental results showed that the proposed neuro-fuzzy system could effectively check the welding conditions as to whether or not weld defects would occur, and also adjust the welding conditions to avoid these weld defects.

  • PDF

Effects of Residual Stress with Welding Condition in the Steel Structure of H-beam (H 빔 구조물의 T-Joint에서 용접조건에 따른 용접잔류응력의 영향)

  • 석한길
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.568-574
    • /
    • 2003
  • In the welding for the steel structure of H-beam with mild steel and 490N/$\textrm{mm}^2$ high tensile steel, we applied the fillet weld mostly and 6-8mm weld length(AISC-spec.). And a new developed metal-cored-wire is used in automatic welding as well as semi-automatic welding. In this study we have attempted to raise the welding productivity and to stabilize the quality on horizontal positions of fillet welding with the following items: - We improved the weld productivity using metal based cored wire with a high deposition rate in the steel structure of H-beam. - We tested the weldability and evaluated the quality of the weldmetal by horizontal fillet $CO_2$ welding. The process is carried out in combination with a special purpose metal-based FCW with excellent resistance to porosity and high welding speed. - We studied the micro structure of the weldmetal by the various welding conditions. - We studied the effect of welding residual stress by the welding conditions in T-joint. Therefore, it can be assured that more productive and superior quality of the weldmetal can be taken from this study results.