• Title/Summary/Keyword: Field-effect transistor

Search Result 795, Processing Time 0.03 seconds

Controlling the Work Functions of Graphene by Functionalizing the Surface of $SiO_2$ Substrates with Self-assembled Monolayers

  • Jo, Ju-Mi;Kim, Yu-Seok;Cha, Myeong-Jun;Lee, Su-Il;Jeong, Sang-Hui;Song, U-Seok;Kim, Seong-Hwan;Jeon, Seung-Han;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.400-401
    • /
    • 2012
  • 그래핀(Graphene)은 열 전도도가 높고 전자 이동도(200 000 cm2V-1s-1)가 우수한 전기적 특성을 가지고 있어 전계 효과 트랜지스터(Field effect transistor; FET), 유기 전자 소자(Organic electronic device)와 광전자 소자(Optoelectronic device) 같은 반도체 소자에 응용 가능하다. 그러나 에너지 밴드 갭이 없기 때문에 소자의 전기적 특성이 제한되는 단점이 있다. 최근에는 아크 방출(Arc discharge method), 화학적 기상 증착법(Chemical vapor deposition; CVD), 이온-조사법(Ion-irradiation) 등을 이용한 이종원자(Hetero atom)도핑과 화학적 처리를 이용한 기능화(Functionalization) 등의 방법으로 그래핀을 도핑 후 에너지 밴드 갭을 형성시키는 연구 결과들이 보고된 바 있다. 그러나 이러한 방법들은 표면이 균일하지 않고, 그래핀에 많은 결함들이 발생한다는 단점이 있다. 이러한 단점을 극복하기 위해 자가조립 단층막(Self-assembled monolayers; SAMs)을 이용하여 이산화규소(Silicon oxide; SiO2) 기판을 기능화한 후 그 위에 그래핀을 전사하면 그래핀의 일함수를 쉽게 조절하여 소자의 전기적 특성을 최적화할 수 있다. SAMs는 그래핀과 SiO2 사이에 부착된 매우 얇고 안정적인 층으로 사용된 물질의 특성에 따라 운반자 농도나 도핑 유형, 디락 점(Dirac point)으로부터의 페르미 에너지 준위(Fermi energy level)를 조절할 수 있다[1-3]. 본 연구에서는 SAMs한 기판을 이용하여 그래핀의 도핑 효과를 확인하였다. CVD를 이용하여 균일한 그래핀을 합성하였고, 기판을 3-Aminopropyltriethoxysilane (APTES)와 Borane-Ammonia(Borazane)을 이용하여 각각 아민 기(Amine group; -NH2)와 보론 나이트라이드(Boron Nitride; BN)로 기능화한 후, 그 위에 합성한 그래핀을 전사하였다. 기판 위에 NH2와 BN이 SAMs 형태로 존재하는 것을 접촉각 측정(Contact angle measurement)을 통해 확인하였고, 그 결과 NH2와 BN에 의해 그래핀에 도핑 효과가 나타난 것을 라만 분광법(Raman spectroscopy)과 X-선 광전자 분광법(X-ray photoelectron spectroscopy: XPS)을 이용하여 확인하였다. 본 연구 결과는 안정적이면서 패턴이 가능하기 때문에 그래핀을 기반으로 하는 반도체 소자에 적용 가능할 것이라 예상된다.

  • PDF

A Study on the Breakdown in MHEMTs with InAlAs/InGaAs Heterostructure Grown on the GaAs substrate (InAlAs/InGaAs/GaAs MHEMT 소자의 항복 특성에 관한 연구)

  • Son, Myung-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.11
    • /
    • pp.1-8
    • /
    • 2011
  • One of the most important parameters that limit maximum output power of transistor is breakdown. InAlAs/InGaAs/GaAs Metamorphic HEMTs (MHEMTs) have some advantages, especially for cost, compared with InP-based ones. However, GaAs-based MHEMTs and InP-based HEMTs are limited by lower breakdown voltage for output power even though they have good microwave and millimeter-wave frequency performance with lower minimum noise figure. In this paper, InAlAs/$In_xGa_{1-x}As$/GaAs MHEMTs are simulated and analyzed for breakdown. The parameters affecting breakdown are investigated in the fabricated 0.1-${\mu}m$ ${\Gamma}$-gate MHEMT device having the modulation-doped $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ heterostructure on the GaAs wafer using the hydrodynamic transport model of a 2D commercial device simulator. The impact ionization and gate field effect in the fabricated device including deep-level traps are analyzed for breakdown. In addition, Indium mole-fraction-dependent impact ionization rates are proposed empirically for $In_{0.52}Al_{0.48}As/In_xGa_{1-x}As$/GaAs MHEMTs.

A study on Etch Characteristics of {Y-2}{O_3}$ Thin Films in Inductively Coupled Plasma (유도 결합 플라즈마를 이용한 {Y-2}{O_3}$ 박막의 식각 특성 연구)

  • Kim, Yeong-Chan;Kim, Chang-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.9
    • /
    • pp.611-615
    • /
    • 2001
  • Y$_2$O$_3$ thin films have been proposed as a buffering insulator of metal/ferroelectric/insulator/semiconductor field effect transistor(MFISFET)-type ferroelectric random access memory (FRAM). In this study, $Y_2$O$_3$ thin films were etched with inductively coupled plasma(ICP). The etch rates of $Y_2$O$_3$ and YMnO$_3$, and the selectivity of $Y_2$O$_3$ to YMnO$_3$ were investigated by varying Cl$_2$/(Cl$_2$+Ar) gas mixing ratio. The maximum etch rate of $Y_2$O$_3$, and the selectivity of $Y_2$O$_3$ to YMnO$_3$ were 302$\AA$/min, and 2.4 at Cl$_2$/(Cl$_2$+Ar) gas mixing ratio of 0.2 respectively. Optical emission spectroscopy(OES) was used to understand the effects of gas combination on the etch rate of $Y_2$O$_3$ thin film. The surface reaction of the etched $Y_2$O$_3$ thin films was investigated by x-ray photoelectron spectroscopy (XPS). XPS analysis confirmed that there was chemical reaction between Y and Cl. This result was confirmed by secondary ion mass spectroscopy(SIMS) analysis.

  • PDF

NO2 Sensing Characteristics of Si MOSFET Gas Sensor Based on Thickness of WO3 Sensing Layer

  • Jeong, Yujeong;Hong, Seongbin;Jung, Gyuweon;Jang, Dongkyu;Shin, Wonjun;Park, Jinwoo;Han, Seung-Ik;Seo, Hyungtak;Lee, Jong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.14-18
    • /
    • 2020
  • This study investigates the nitrogen dioxide (NO2) sensing characteristics of an Si MOSFET gas sensor with a tungsten trioxide (WO3) sensing layer deposited using the sputtering method. The Si MOSFET gas sensor consists of a horizontal floating gate (FG) interdigitated with a control gate (CG). The WO3 sensing layer is deposited on the interdigitated CG-FG of a field effect transistor(FET)-type gas sensor platform. The sensing layer is deposited with different thicknesses of the film ranging from 100 nm to 1 ㎛ by changing the deposition times during the sputtering process. The sensing characteristics of the fabricated gas sensor are measured at different NO2 concentrations and operating temperatures. The response of the gas sensor increases as the NO2 concentration and operating temperature increase. However, the gas sensor has an optimal performance at 180℃ considering both response and recovery speed. The response of the gas sensor increases significantly from 24% to 138% as the thickness of the sensing layer increases from 100 nm to 1 ㎛. The sputtered WO3 film consists of a dense part and a porous part. As reported in previous work, the area of the porous part of the film increases as the thickness of the film increases. This increased porous part promotes the reaction of the sensing layer with the NO2 gas. Consequently, the response of the gas sensor increases as the thickness of the sputtered WO3 film increases.

New Ruthenium Complexes for Semiconductor Device Using Atomic Layer Deposition

  • Jung, Eun Ae;Han, Jeong Hwan;Park, Bo Keun;Jeon, Dong Ju;Kim, Chang Gyoun;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.363-363
    • /
    • 2014
  • Ruthenium (Ru) has attractive material properties due to its promising characteristics such as a low resistivity ($7.1{\mu}{\Omega}{\cdot}cm$ in the bulk), a high work function of 4.7 eV, and feasibility for the dry etch process. These properties make Ru films appropriate for various applications in the state-of-art semiconductor device technologies. Thus, it has been widely investigated as an electrode for capacitor in the dynamic random access memory (DRAM), a metal gate for metal-oxide semiconductor field effect transistor (MOSFET), and a seed layer for Cu metallization. Due to the continuous shrinkage of microelectronic devices, better deposition processes for Ru thin films are critically required with excellent step coverages in high aspect ratio (AR) structures. In these respects, atomic layer deposition (ALD) is a viable solution for preparing Ru thin films because it enables atomic-scale control of the film thickness with excellent conformality. A recent investigation reported that the nucleation of ALD-Ru film was enhanced considerably by using a zero-valent metallorganic precursor, compared to the utilization of precursors with higher metal valences. In this study, we will present our research results on the synthesis and characterization of novel ruthenium complexes. The ruthenium compounds were easy synthesized by the reaction of ruthenium halide with appropriate organic ligands in protic solvent, and characterized by NMR, elemental analysis and thermogravimetric analysis. The molecular structures of the complexes were studied by single crystal diffraction. ALD of Ru film was demonstrated using the new Ru metallorganic precursor and O2 as the Ru source and reactant, respectively, at the deposition temperatures of $300-350^{\circ}C$. Self-limited reaction behavior was observed as increasing Ru precursor and O2 pulse time, suggesting that newly developed Ru precursor is applicable for ALD process. Detailed discussions on the chemical and structural properties of Ru thin films as well as its growth behavior using new Ru precursor will be also presented.

  • PDF

Study on the Low-temperature process of zinc oxide thin-film transistors with $SiN_x$/Polymer bilayer gate dielectrics ($SiN_x$/고분자 이중층 게이트 유전체를 가진 Zinc 산화물 박막 트랜지스터의 저온 공정에 관한 연구)

  • Lee, Ho-Won;Yang, Jin-Woo;Hyung, Gun-Woo;Park, Jae-Hoon;Koo, Ja-Ryong;Cho, Eou-Sik;Kwon, Sang-Jik;Kim, Woo-Young;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.137-143
    • /
    • 2010
  • Oxide semiconductors Thin-film transistors are an exemplified one owing to its excellent ambient stability and optical transparency. In particular zinc oxide (ZnO) has been reported because It has stability in air, a high electron mobility, transparency and low light sensitivity, compared to any other materials. For this reasons, ZnO TFTs have been studied actively. Furthermore, we expected that would be satisfy the demands of flexible display in new generation. In order to do that, ZnO TFTs must be fabricated that flexible substrate can sustain operating temperature. So, In this paper we have studied low-temperature process of zinc oxide(ZnO) thin-film transistors (TFTs) based on silicon nitride ($SiN_x$)/cross-linked poly-vinylphenol (C-PVP) as gate dielectric. TFTs based on oxide fabricated by Low-temperature process were similar to electrical characteristics in comparison to conventional TFTs. These results were in comparison to device with $SiN_x$/low-temperature C-PVP or $SiN_x$/conventional C-PVP. The ZnO TFTs fabricated by low-temperature process exhibited a field-effect mobility of $0.205\;cm^2/Vs$, a thresholdvoltage of 13.56 V and an on/off ratio of $5.73{\times}10^6$. As a result, We applied experimental for flexible PET substrate and showed that can be used to ZnO TFTs for flexible application.

Novel Graphene Volatile Memory Using Hysteresis Controlled by Gate Bias

  • Lee, Dae-Yeong;Zang, Gang;Ra, Chang-Ho;Shen, Tian-Zi;Lee, Seung-Hwan;Lim, Yeong-Dae;Li, Hua-Min;Yoo, Won-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.120-120
    • /
    • 2011
  • Graphene is a carbon based material and it has great potential of being utilized in various fields such as electronics, optics, and mechanics. In order to develop graphene-based logic systems, graphene field-effect transistor (GFET) has been extensively explored. GFET requires supporting devices, such as volatile memory, to function in an embedded logic system. As far as we understand, graphene has not been studied for volatile memory application, although several graphene non-volatile memories (GNVMs) have been reported. However, we think that these GNVM are unable to serve the logic system properly due to the very slow program/read speed. In this study, a GVM based on the GFET structure and using an engineered graphene channel is proposed. By manipulating the deposition condition, charge traps are introduced to graphene channel, which store charges temporarily, so as to enable volatile data storage for GFET. The proposed GVM shows satisfying performance in fast program/erase (P/E) and read speed. Moreover, this GVM has good compatibility with GFET in device fabrication process. This GVM can be designed to be dynamic random access memory (DRAM) in serving the logic systems application. We demonstrated GVM with the structure of FET. By manipulating the graphene synthesis process, we could engineer the charge trap density of graphene layer. In the range that our measurement system can support, we achieved a high performance of GVM in refresh (>10 ${\mu}s$) and retention time (~100 s). Because of high speed, when compared with other graphene based memory devices, GVM proposed in this study can be a strong contender for future electrical system applications.

  • PDF

Electrical Properties of ReMnO3(Re:Y, Ho, Er) Thin Film Prepared by MOCVD Method (화학 기상 증착법으로 제조한 ReMnO3(Re:Y, Ho, Er) 박막의 전기적 특성)

  • Kim, Eung-Soo;Chae, Jung-Hoon;Kang, Seung-Gu
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1128-1132
    • /
    • 2002
  • $ReMnO_3$(Re:Y, Ho, Er) thin films were prepared by MOCVD method available to non-volatile memory device with MFS-FET structure. $ReMnO_3$ thin films were deposited on the Si(100) substrate at 700${\circ}C$ for 2h. When the films were post-annealed at 900${\circ}C$ for 1h in air, the single phase of hexagonal $ReMnO_3$ thin films were detected. Ferroelectric properties of $ReMnO_3$ thin films were dependent on the degree of c-axis orientation in the single phase of hexagonal structure and remnant polarization (Pr) of $YMnO_3$ thin films with high degree of c-axis orientation was 105 nC/$cm^2$. Leakage current density was dependent on the grain size of microstructure and that of $YMnO_3$ thin films with grain size of 100∼150 nm was $10^{-8}$ A/$cm^2$ at applied voltage of 0.5 V.

Dual-Band High-Efficiency Class-F Power Amplifier using Composite Right/Left-Handed Transmission Line (Composite Right/Left-Handed 전송 선로를 이용한 이중 대역 고효율 class-F 전력증폭기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.53-59
    • /
    • 2008
  • In this paper, a novel dual-band high-efficiency class-F power amplifier using the composite right/left-handed (CRLH) transmission lines (TLs) has been realized with one RF Si lateral diffusion metal-oxide-semiconductor field effect transistor (LDMOSFET). The CRLH TL can lead to metamaterial transmission line with the dual-band tuning capability. The dual-band operation of the CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. Because the control of the all harmonic components is very difficult in dual-band, we have managed only the second- and third-harmonics to obtain the high efficiency with the CRLH TL in dual-band. Also, the proposed power amplifier has been realized by using the harmonic control circuit for not only the output matching network, but also the input matching network for better efficiency. Two operating frequencies are chosen at 880 MHz and 1920 MHz in this work. The measured results show that the output power of 39.83 dBm and 35.17 dBm was obtained at 880 MHz and 1920 MHz, respectively. At this point, we have obtained the power-added efficiency (PAE) of 79.536 % and 44.04 % at two operation frequencies, respectively.

Polydiacetylene-Based Chemo-/Biosensor of Label Free System with Various Sensing Tools (다양한 감지 방법을 갖고 있는 폴리디아세틸렌 기반 비표지 화학/바이오센서)

  • Park, Hyun-Kyu;Park, Hyun-Gyu;Chung, Bong-Hyun
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.409-413
    • /
    • 2007
  • Polydiacetylene(PDA)-based sensors possess a number of properties that can be successfully applied for label-free detection system. PDA is one of the most attractive color-generating materials, with growing applications as sensors. Here we introduce various PDA-based devices, used as biosensor, chemosensor, thermosensor, and optoelectronics sensor. In general, PDA liposomes and films are closely packed and properly designed for polymerization via 1,4-addition reaction to form an ene-yne alternating polymer chain. PDA-based two/three dimensional structures have been used for colorimetric or fluorescent devices, sensing biological as well as chemical components. This color-generating material also present a very high charge carrier mobility, allowing its application as field-effect transistor (FET). The immobilized PDA structures or films have distinct advantages for the detection of low concentration target molecules over the aqueous solution-based detection systems. In the present review, reported detection methods by using various PDA structures are summarized with updated references.